

GOVERNING CODES & STANDARDS

A. ROOF LIVE LOAD

3. RAIN LOADING

BUILDING CODE:	0BC 2024	OHIO BUILDING CODE					
	IBC 2021	INTERNATIONAL BUILDING CODE					
STANDARDS:	ASCE 7-16	AMERICAN SOCIETY OF CIVIL ENGINEERS: MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURES					
	ADM	THE ALUMINUM ASSOCIATION: SPECIFICATION FOR ALUMINUM STRUCTURES					
	ACI 318	AMERICAN CONCRETE INSTITUTE: BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE					
	TMS 402	THE MASONRY SOCIETY: BUILDING CODE REQUIREMENTS FOR MASONRY STRUCTURES					
	ASC 360	AMERICAN INSTITUTE OF STEEL CONSTRUCTION: SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS					
	AISC 341	AMERICAN INSTITUTE OF STEEL CONSTRUCTION: SEISMIC PROVISIONS FOR STRUCTURAL STEEL BUILDINGS					
	AWS D1.1	AMERICAN WELDING SOCIETY: STRUCTURAL WELDING CODE - STEEL					
	AWS D1.3	AMERICAN WELDING SOCIETY: STRUCTURAL WELDING CODE - SHEET STEEL					
	AWS D1.4	AMERICAN WELDING SOCIETY: STRUCTURAL WELDING CODE - REINFORCING STEEL					
	AISI S100	AMERICAN IRON AND STEEL INSTITUTE: NORTH AMERICAN SPECIFICATION FOR THE DESIGN OF COLD-FORMED					
		STEEL STRUCTURAL MEMBERS					
	AWC NDS	AMERICAN WOOD COUNCIL: NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION					
	AWC SPDWS	AMERICAN WOOD COUNCIL: SPECIAL DESIGN PROVISIONS FOR WIND AND SEISMIC					
	ASTM	AMERICAN SOCIETY FOR TESTING AND MATERIALS					
DESIGN CRITERIA							
1. DEAD LOADING							
A. SUPERIMPOSED DEAD LOAD 5 PSF (IN ADDITION TO THE STRUCTURE SELF WEIGHT)							
2. LIVE LOADING	2. LIVE LOADING						

	Α.	DESIGN RAINFALL: 4.5"/HOUR (100-YEA	AR, 1-HOUR RAINFALL)
		a. RAINWATER AT LOWEST POINT OF F	ROOF SHALL NOT POND DURING DESIGN RAINFALL
	В.	DESIGN RAIN LOAD, R:	20 PSF
4.	SN	OW LOADING	
	Α.	GROUND SNOW LOAD	25 PSF
	В.	MIN ROOF LOAD	25 PSF
	C.	SNOW EXPOSURE FACTOR	1.0
	D.	SNOW LOAD IMPORTANCE FACTOR	1.0
	Ε.	THERMAL FACTOR	1.2
5.	WI	ND LOADING INPUTS	
	Α.	RISK CATEGORY	
	В.	ULTIMATE WIND SPEED	115 MPH (ASD=SQRT(0.6)*Vult)
	C.	WIND EXPOSURE FACTOR	C
	D.	DIRECTIONALITY/OTHER FACTORS	Kd=0.85, G=0.85, Kz=0.85, Kzt=1.0
	Ε.	METHODOLOGY	OPEN HOST ATTACHED CANOPY
	F.	MEAN ROOF HEIGHT	8' - 6"
	G.	SYSTEM MOUNTING HEIGHT	0' - 0"
6.	SEI	ISMIC LOADS	
	Α.	RISK CATEGORY	ll
	В.	SITE CLASS	D
	C.	S _S	0.134
	D.	S _{DS}	0.143
	Ε.	S ₁	0.049
	F.	S _{D1}	0.078
	G.	SEISMIC DESIGN CATEGORY (SDC)	В
	н.	LONG TRANSITION PERIOD (T _L)	12
	١.	LATERAL RESISTING SYSTEM	NONSTRUCTURAL COMPONENTS (APPENDAGES & ORNAMENTATIONS)
	J.	REDUNDANCY FACTOR, ρ:	1.0
	Κ.	OVERSTRENGTH FACTOR, Ωο:	2.0
	L.	RESPONSE MODIFICATION FACTOR, R:	2.5
	М.	AMPLIFICATION FACTOR:	2.5
7.	SEI	RVICEABILITY:	
		a. TOTAL LOAD DEFLECTION:	L/120
		b. LIVE LOAD DEFLECTION:	L/180

20 PSF (REDUCIBLE)

EARTHWORK & FOUNDATIONS

- A. THE INFORMATION HEREIN MAY BE USED BY THE CONTRACTOR FOR HIS GENERAL REFERENCE ONLY. A GEOTECHNICAL REPORT AND
- RECOMMENDATIONS SHALL SUPERSEDE THE MINIMUM CRITERIA STATED IN THE STRUCTURAL GENERAL NOTES. B. PILE/GROUND SCREW FOUNDATION SYSTEM ARE DESIGNED BASED ON THE FOLLOWING DESIGN CRITERIA PER THE ICC REPORT ESR-4226:
- A. PILE TYPE: GROUND SCREWS B. PILE SIZE: 4 1/2" INCH DIAMETER
- C. PILE SERVICE COMPRESSION CAPACITY: 38.7 KIPS
- D. PILE SERVICE TENSION CAPACITY: 9 KIPS
- E. PILE SERVICE SHEAR CAPACITY: 11.5 KIPS
- F. PILE SERVICE MOMENT CAPACITY: 4.36 KIPS
- G. PILE APPROXIMATE DEPTH: 6' 6" BELOW EXISTING GROUND LEVEL
- H. DESIGN SERVICE COMPRESSION: 2.0 KIPS
- I. DESIGN SERVICE TENSION: 0.2 KIPS J. DESIGN SERVICE SHEAR: 0.4 KIP
- K. DESIGN SERVICE MOMENT: 1.98 KIP-FT
- C. ASSUMED PILE DEPTH SHALL BE VERIFIED IN FIELD BY QUALIFIED GEOTECHNICAL ENGINEER RETAINED BY THE OWNER.
- D. CENTER ALL POSTS UNDER THEIR RESPECTIVE PILES.
- E. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR ALL EXCAVATION PROCEDURES INCLUDING, BUT NOT LIMITED TO: LAGGING, SHORING, AND PROTECTION OF ADJACENT PROPERTY, STRUCTURES, STREETS, AND UTILITIES IN ACCORDANCE WITH THE REQUIREMENTS OF THE LOCAL BUILDING DEPARTMENT AND OSHA REGULATIONS.
- F. EXCAVATION SHALL NOT OCCUR WITHIN ONE FOOT OF THE ANGLE OF REPOSE OF ANY SOIL BEARING FOUNDATION UNLESS THE FOUNDATION IS
- PROTECTED AGAINST SETTLEMENT. G. CONTRACTOR SHALL DETERMINE THE EXTENT OF THE CONSTRUCTION DEWATERING SYSTEMS REQUIRED FOR THE EXCAVATION. AT A MINIMUM, CONTRACTOR SHALL PROVIDE POSITIVE DRAINAGE AWAY FROM THE BUILDING SITE.

EXISTING CONDITIONS & DEMOLITION

1. EXISTING CONDITIONS

- A. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND CONDITIONS OF EXISTING BUILDINGS AT THE CONSTRUCTION SITE AND REPORT ANY DISCREPANCIES FROM THE ASSUMED CONDITIONS SHOWN ON THE DRAWINGS TO THE ARCHITECT/STRUCTURAL ENGINEER OF RECORD PRIOR TO FABRICATION OR ERECTION OF ANY STRUCTURAL MEMBER.
- B. EXISTING CONDITIONS SHALL BE SHOWN HALFTONE ON THE CONTRACT DRAWINGS UNLESS NOTED OTHERWISE.
- C. EXISTING CONDITIONS SHOWN ON THE CONTRACT DRAWINGS WERE OBTAINED FROM EXISTING CONSTRUCTION DOCUMENTS AND LIMITED SITE OBSERVATION. DRAWINGS OF EXISTING CONSTRUCTION ARE AVAILABLE TO THE CONTRACTOR UPON REQUEST TO THE OWNER. HOWEVER, THE AVAILABLE DRAWINGS OF THE EXISTING CONDITIONS ARE NOT NECESSARILY COMPLETE. THE CONTRACTOR SHALL FIELD VERIFY ALL APPLICABLE INFORMATION.
- D. THE CONTRACTOR SHALL VERIFY THE LOCATION OF EXISTING UTILITIES PRIOR TO START OF CONSTRUCTION AND ENSURE PROTECTION OF EXISTING UTILITIES THAT REMAIN IN SERVICE.

- A. BEAMS, PURLINS, COLUMNS B. ALL OTHER EXTRUSIONS C. FASTENERS

- - 2020 ADM M.7.3. 8. BOLT HOLES SHALL BE DRILLED IN THE SAME NOMINAL DIAMETER AS THE BOLT + 1/16".

STRUCTURAL WOOD

LOUVERED PERGOLA DESIGN & OPERATION:

STRUCTURAL ALUMINUM & ALUMINUM WELDING:

1. ALL COMPONENTS SHALL BE STRUCTURAL ALUMINUM (U.N.O.) AND SHALL BE FABRICATED AND ERECTED ACCORDING TO THE GOVERNING BUILDING CODE AND MATERIAL STANDARDS REFERENCED ON THIS SHEET.

- 2. ALL STRUCTURAL ALUMINUM SHALL BE MIN 1/8" THICK U.N.O. AND BE OF THE FOLLOWING ALLOY AND TEMPER: 6063-T6
 - 6063-T6 SS 316
- 3. STRUCTURAL ALUMINUM SHALL BE FRAMED PLUMB AND TRUE AND ADEQUATELY BRACED DURING CONSTRUCTION.

4. WHERE ALUMINUM IS IN CONTACT WITH OTHER METALS EXCEPT 300 SERIES STAINLESS STEEL, ZINC OR CADMIUM AND THE FAYING SURFACES ARE EXPOSED TO MOISTURE, THE OTHER METALS SHALL BE PAINTED OR COATED WITH ZINC, CADMIUM, OR ALUMINUM. 5. UNCOATED ALUMINUM SHALL NOT BE EXPOSED TO MOISTURE OR RUNOFF THAT HAS COME IN CONTACT WITH OTHER UNCOATED METALS EXCEPT 300 SERIES STAINLESS STEEL, ZINC, OR CADMIUM. ALUMINUM SURFACES TO BE PLACED IN CONTACT WITH MASONRY, CONCRETE, WOOD, FIBERBOARD, OR

OTHER POROUS MATERIAL THAT ABSORBS WATER SHALL BE PAINTED. 6. FOR ALUMINUM IN CONTACT WITH CONCRETE: ACCEPTABLE PAINTS: PRIMING PAINT (ONE COAT), SUCH AS ZINC MOLYBDATE PRIMER IN ACCORDANCE WITH FEDERAL SPECIFICATION TT-P-645B ("GOOD QUALITY", NO LEAD CONTENT). ALT: HEAVY COATING OF ALKALI-RESISTANT BITUMINOUS PAINT. ALT: WRAP ALUMINUM WITH A SUITABLE PLASTIC TAPE APPLIED IN SUCH A MANNER AS TO PROVIDE ADEQUATE PROTECTION AT THE OVERLAPS.

7. ALUMINUM SHALL NOT BE EMBEDDED IN CONCRETE TO WHICH CORROSIVE COMPONENTS SUCH AS CHLORIDES HAVE BEEN ADDED IF THE ALUMINUM WILL BE ELECTRICALLY CONNECTED TO STEEL. EMBEDDED ALUMINUM ELEMENTS WILL BE COVERED WITH PLASTIC TAPE OR OTHERWISE PROTECTED AS PER

9. ALUMINUM WELDING SHALL BE PERFORMED IN ACCORDANCE WITH WELD FILLER ALLOYS MEETING ANSI/AWS A5.10 STANDARDS TO ACHIEVE ULTIMATE DESIGN STRENGTH IN ACCORDANCE WITH THE ALUMINUM DESIGN MANUAL PART I-A, TABLE 7.3.1. ALL ALUMINUM CONSTRUCTION SHALL BE IN CONFORMANCE WITH THE TOLERANCES, QUALITY, AND METHODS OF CONSTRUCTION AS SET FORTH IN THE AMERICAN WELDING SOCIETY'S STRUCTURAL WELDING CODE ALUMINUM (D1.2). MINIMUM WELD IS 1/8" THROAT FULL PERIMETER FILLET WELD UNLESS OTHERWISE NOTED.

10. STAINLESS STEEL FASTENERS SHALL BE ASTM F593 316 SS COLD WORKED CONDITION. PROVIDE (5) PITCHES MINIMUM PAST THE THREAD PLANE FOR ALL SCREW CONNECTIONS. ALL FASTENER CONNECTIONS TO METAL SHALL PROVIDE 2×DIAMETER EDGE DISTANCE AND 3×DIAMETER SPACING. 11. SELF-DRILLING SCREWS SHALL BE TEK BRAND / ALL POINTS FASTENERS OF SIZE #14, STAINLESS STEEL 300 SERIES, WITH MINIMUM 1/2" THREAD

ENGAGEMENT BEYOND THE CONNECTED PART, UNLESS OTHERWISE NOTED. 12. THE CONTRACTOR IS RESPONSIBLE TO INSULATE ALL MEMBERS FROM DISSIMILAR MATERIALS TO PREVENT ELECTROLYSIS.

1. ALL DIMENSION LUMBER SHALL BE STRUCTURAL GRADE #2 SOUTHERN YELLOW PINE OR BETTER MEETING APPLICABLE REQUIREMENTS OF THE SOUTHERN PINE INSPECTION BUREAU (SPIB) AND PRESSURE-IMPREGNATED (PT) BY AN APPROVED PROCESS (ACQ 0.4 PRESSURE TREATED) PRESERVATIVE IN ACCORDANCE WITH THE APPLICABLE PROVISIONS OF THE BUILDING CODE AND AMERICAN WOOD PRESERVERS ASSN (AWPA) "BOOK OF STANDARDS" OR 0.55 SPECIFIC GRAVITY MIN.

2. MEMBER SIZES SHOWN ARE NOMINAL UNLESS NOTED OTHERWISE

3. ALL METAL CONNECTORS IN CONTACT WITH WOOD USED IN LOCATIONS EXPOSED TO WEATHER SHALL BE GALVANIZED.

4. NAILS SHALL PENETRATE THE SECOND MEMBER A DISTANCE EQUAL TO THE THICKNESS OF THE MEMBER BEING NAILED THERETO. THERE SHALL BE NOT LESS THAN 2 NAILS IN ANY CONNECTION. 5. MEMBERS SHALL BE FREE OF CRACKS AND KNOTS. MOISTURE CONTENT SHALL BE 19% OR LESS. DRY WOOD MAY SPLIT MORE EASILY. IF WOOD TENDS TO SPLIT. PRE-BORING HOLES SHALL BE USED WITH DIAMETERS NOT EXCEEDING 3/4" OF THE NAIL DIAMETER OR USE A 5/32" BIT FOR SDS SCREWS. A

FASTENER THAT SPLITS THE WOOD SHALL BE REEVALUATED PRIOR LOADING THE CONNECTION. 6. WOOD THAT IS IN CONTACT WITH CONCRETE OR MASONRY, AND AT OTHER LOCATIONS AS SHOWN ON STRUCTURAL DRAWINGS, SHALL BE PROTECTED WITH 30 # FELT OR PRESSURE TREATED IN ACCORDANCE WITH AITC-109. MEMBER SIZE SHOWN ARE NOMINAL.

1. THE LOUVERED ROOFING SYSTEM SHALL BE INSTALLED WITH THE **AZENCO R-BLADE** PRODUCT.

2. LOUVERS SHALL BE SPACED SUCH THAT THEY ALLOW 50% SYSTEM POROSITY WHEN FULLY OPENED. 3. LOUVERS SHALL BE ROTATED TO A 90 DEGREE 'OPEN' POSITION DURING ANY NAMED STORM OR WEATHER DESIGN EVENT TO PREVENT EXCESSIVE FORCE TO THIS STRUCTURE. THE OWNER SHALL BE NOTIFIED IN WRITING OF THIS AND THAT CARE SHALL BE TAKEN TO AVOID BUILDUP OF SNOW, DEBRIS,

CONSTRUCTION LOADS, & ANY OTHER FORCES THAT CAN AFFECT THE INTEGRITY OF THIS DESIGN. 4. THE STRUCTURE SHALL BE POSTED WITH A LEGIBLE AND READILY VISIBLE DECAL OR PAINTED INSTRUCTIONS TO THE OWNER OR TENANT STATING TO REPOSITION THE LOUVERS AND WINDSCREENS DURING WIND OR SNOW ADVISORIES. THE CANOPY OWNER SHALL BE NOTIFIED OF THESE CONDITIONS BY

THE PERMIT HOLDER AT THE TIME OF SALE. 5. SYSTEM SHALL BE EQUIPPED AND TELECO CERTIFIED TO OPERATE PROPERLY WITH SENSORS WHICH WILL PROMPT THE LOUVER BLADES TO ROTATE TO THE OPEN (VERTICAL) POSITION WHENEVER THE WIND SPEED REACHES 45 MPH MINIMUM, OR TEMPERATURE DROPS TO 32° FAHRENHEIT OR LOWER, AND/OR INCLUDE THE ABILITY FOR MANUAL OPENING AND LOCKING BY THE USER.

6. LOUVERED ROOF SYSTEM SHALL BE PER MANUFACTURER MAXIMUM SPANS OR BY OTHERS. 7. NO CERTIFICATION IS OFFERED FOR WATERPROOFING, SIZING, OR OPERATION OF GUTTERS. SYSTEM NOT DESIGNED FOR WATERSHED OF RAINFALL FROM ADJACENT ROOFS UNLESS SPECIFICALLY SHOWN HEREIN, TYP.

GENERAL NOTES

- REQUIRE ADDITIONAL SITE-SPECIFIC SEALED ENGINEERING.
- 8. SPECIAL INSPECTIONS MAY BE REQUESTED OR REQUIRED AT THE DISCRETION OF THE AUTHORITY HAVING JURISDICTION. SHEET WITHIN THIS SET.
- A WRITTEN RESPONSE IN RETURN.
- WALLS, ETC.
- STAGE DURING CONSTRUCTION.
- DRAWINGS.
- CONFINE THE SITE OR PROTECT ADJACENT PROPERTY FROM DAMAGE.
- CHEMICAL ENVIRONMENT. CONSULTING A LICENSED PROFESSIONAL ENGINEER.

ELECTRONIC DATA/REPRODUCTION

- THEIR TRANSFER BE CONSIDERED A SALE.
- SIZE, AND OUANTITIES.

1. ALLOWABLE DESIGN PRESSURES UTILIZED IN THIS DOCUMENT HAVE BEEN CALCULATED PER THE REQUIREMENTS OF THE CODES AND STANDARDS STATED HEREIN USING ASCE 7-16 ALLOWABLE STRESS DESIGN METHODOLOGY WITH THE CRITERIA AS OUTLINED HEREIN. THE CONTRACTOR SHALL CONTACT THE AUTHORITY HAVING JURISDICTION TO ENSURE APPROPRIATE CRITERIA TO BE USED BEFORE CONSTRUCTION BEGINS. 2. DIMENSIONS ARE SHOWN TO ILLUSTRATE DESIGN FORCES AND OTHER DESIGN CRITERIA. IN SOME CASES, DETAILS MAY BE INTENTIONALLY ALTERED FOR PRESENTATION PURPOSES. DO NOT SCALE DIMENSIONS ELECTRONICALLY OR OTHERWISE. FIELD INSTALLATION MAY VARY SLIGHTLY BUT MUST REMAIN

WITHIN 5% OF THE INTENDED DESIGN. THE CONTRACTOR IS TO VERIFY ALL DIMENSIONS PRIOR TO INSTALLATION. 3. THE INTEGRITY OF ANY EXISTING STRUCTURE HAS NOT BEEN VERIFIED BY THIS ENGINEER. THESE PLANS ARE NOT TO BE USED FOR CONSTRUCTION UNTIL

A DESIGN PROFESSIONAL APPROVES THE HOST STRUCTURE AS BEING ABLE TO ACCOMMODATE THE NEW DESIGN. 4. APPROVAL OF THE HOST STRUCTURE FOR USE SHALL BE AT THE DISCRETION OF THE BUILDING OFFICIAL AND/OR SEPARATE ENGINEERING CERTIFICATION. 5. THIS STRUCTURE HAS BEEN DESIGNED AND SHALL BE FABRICATED IN ACCORDANCE WITH THE STRUCTURAL PROVISIONS OF THE ABOVE-REFERENCED BUILDING CODE. STRUCTURE SHALL BE FABRICATED IN ACCORDANCE WITH ALL GOVERNING CODES. THE CONTRACTOR SHALL INVESTIGATE AND CONFORM TO ALL LOCAL BUILDING CODE AMENDMENTS WHICH MAY APPLY AND GOVERN. DESIGN CRITERIA OR SPANS BEYOND STATED HEREIN MAY

6. THE EXISTING HOST STRUCTURE MUST BE CAPABLE OF SUPPORTING THE LOADED SYSTEM AS VERIFIED BY THE ENGINEER & OR ARCHITECT OF RECORD, et.al. THE HOST STRUCTURE WHICH IS DESIGNED, CERTIFIED, AND INSPECTED BY OTHERS MUST PROVIDE SUFFICIENT, CAPACITY FOR THIS SPECIFIED DECK SYSTEM. NO WARRANTY OR GUARANTEE TO THESE CONDITIONS. EITHER EXPRESSED OR IMPLIED, IS OFFERED WITH THIS CERTIFICATION. 7. THE CONTRACTOR SHALL CAREFULLY CONSIDER POSSIBLE IMPOSING LOADS ON ROOF, INCLUDING BUT NOT LIMITED TO ANY CONCENTRATED LOADS WHICH MAY JUSTIFY GREATER DESIGN CRITERIA. ALL STRUCTURAL MEMBERS AS SHOWN HAVE BEEN DESIGNED TO CARRY IN PLACE DESIGN LOADS ONLY; THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE SUPPORT OF ANY ADDITIONAL LOADS AND FORCES IMPOSED DURING MANUFACTURING, TRUCKING, ERECTING, AND HANDLING. SYSTEM NOT DESIGNED TO HANDLE CONCENTRATED LOADS FROM HUMAN ACTIVITY.

9. GENERAL STRUCTURAL NOTES ARE APPLICABLE TO THE DESIGN AND CONSTRUCTION OF THE ENTIRE PROJECT AND THUS ARE APPLICABLE TO EVERY

10. SHOULD THE CONTRACTOR ENCOUNTER A CONFLICT BETWEEN THESE DRAWINGS AND ANY OTHER CONTRACT DOCUMENT OR APPLICABLE CODE OR STANDARD OF PRACTICE DURING BIDDING, THE PROVISION RESULTING IN THE GREATER COST APPLIES. SHOULD THE CONTRACTOR ENCOUNTER A CONFLICT DURING CONSTRUCTION, THE CONTRACTOR SHALL SUBMIT A WRITTEN REQUEST FOR CLARIFICATION TO THE DESIGN TEAM, WHO WILL PROVIDE

11. THE CONTRACTOR SHALL SUPERVISE AND DIRECT ALL WORK AND SHALL BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, PROCEDURES, TECHNIQUES, AND SEQUENCE. THE CONTRACTOR HAS SOLE RESPONSIBILITY FOR THE QUALITY AND CORRECTNESS OF THE WORK. 12. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR COORDINATION OF THE STRUCTURAL WORK WITH OTHER TRADES INCLUDING, BUT NOT LIMITED TO: ARCHITECTURAL, CIVIL, AND MEP FOR FLOOR SLAB STEPS, SLOPES AND CURBS, FLOOR SLAB FINISH, OPENINGS IN STRUCTURAL FLOORS, ROOFS AND

13. THE BUILDING HAS BEEN DESIGNED BY THE STRUCTURAL ENGINEER OF RECORD TO RESIST THE CODE REQUIRED VERTICAL AND LATERAL FORCES IN ITS FULLY COMPLETED CONDITION. THE CONTRACTOR SHALL PROVIDE ALL REQUIRED BRACING, SHORING, AND OTHER CONSTRUCTION SUPPORTS NECESSARY TO ENSURE THE BUILDING'S STABILITY AND SAFETY THROUGHOUT THE DURATION OF CONSTRUCTION. FURTHER, THE CONTRACTOR SHALL NOT OVERLOAD THE STRUCTURE DURING CONSTRUCTION. THE CONTRACTOR SHALL RETAIN A LICENSED PROFESSIONAL ENGINEER TO PROVIDE THE ANALYSIS AND DESIGN NECESSARY TO DETERMINE POTENTIALLY OVERLOADED, UNSTABLE, OR HAZARDOUS CONDITIONS THAT MAY OCCUR AT ANY

14. THE CONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS AND COORDINATE WITH THE CONTRACT DOCUMENTS AND SHOP

15. THE CONTRACTOR SHALL NOT EMPLOY CONSTRUCTION MEANS OR METHODS THAT MAY DAMAGE UTILITIES, ADJACENT BUILDINGS, OR PROPERTY. DOCUMENTATION OF ADJACENT CONDITIONS PRIOR TO CONSTRUCTION IS RECOMMENDED. FURTHER, THE CONTRACTOR SHALL EITHER ADEQUATELY

16. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR PROJECT SAFETY AND OSHA REQUIREMENTS. SHOULD THE STRUCTURAL ENGINEER OF RECORD NOTIFY THE CONTRACTOR OF A POTENTIALLY UNSAFE CONDITION, IT IS SOLELY AS A COURTESY FROM ONE PROFESSIONAL TO ANOTHER. IT SHOULD NOT BE INTERPRETED AS THE STRUCTURAL ENGINEER OF RECORD ASSUMING ANY RESPONSIBILITY FOR PROJECT SAFETY.

17. ALL STRUCTURES REQUIRE PERIODIC MAINTENANCE TO EXTEND LIFE SPAN AND ENSURE STRUCTURAL INTEGRITY FROM EXPOSURE TO THE ENVIRONMENT. A PLANNED PROGRAM OF MAINTENANCE SHALL BE ESTABLISHED BY THE BUILDING OWNER. THIS PROGRAM SHALL INCLUDE, BUT NOT BE LIMITED TO: PAINTING OF STRUCTURAL STEEL, PROTECTIVE COATINGS FOR CONCRETE, SEALANTS, CAULKED JOINTS, EXPANSION JOINTS, CONTROL JOINTS, SPALLS AND CRACKS IN CONCRETE, AND PRESSURE WASHING OF EXPOSED STRUCTURAL ELEMENTS EXPOSED TO A SALINE OR OTHER HARSH

18. THE BUILDING OWNER SHALL NOT ALTER OR MODIFY ANY STRUCTURAL ELEMENT WITHOUT CONSULTING A LICENSED PROFESSIONAL ENGINEER. FURTHER, BUILDING OWNER SHALL NOT RENOVATE, REPURPOSE, ADD-ON TO, OR OTHERWISE MODIFY THE EXISTING STRUCTURAL SYSTEMS WITHOUT

1. ALL INFORMATION CONTAINED IN THE ELECTRONIC FILES OF THE CONTRACT DOCUMENTS ARE INSTRUMENTS OF SERVICE OF THE ARCHITECT/STRUCTURAL ENGINEER OF RECORD AND SHALL NOT BE USED FOR OTHER PROJECTS, ADDITIONS TO THE PROJECT, OR THE COMPLETION OF THE PROJECT BY OTHERS. ELECTRONIC FILES OF THE STRUCTURAL DOCUMENTS REMAIN THE PROPERTY OF AM STRUCTURES AND IN NO CASE SHALL

2. THE USE OF ELECTRONIC FILES OR REPRODUCTIONS OF THESE CONTRACT DOCUMENTS BY ANY CONTRACTOR, SUBCONTRACTOR, ERECTOR, FABRICATOR, OR MATERIAL SUPPLIER IN LIEU OF PREPARATION OF SHOP DRAWINGS SIGNIFIES THEIR ACCEPTANCE OF ALL INFORMATION SHOWN HEREIN AS CORRECT AND OBLIGATES THEMSELVES TO ANY JOB EXPENSE, REAL OR IMPLIED, ARISING DUE TO ANY ERRORS OR OMISSIONS THAT MAY OCCUR HEREIN. THE USE OF ELECTRONIC FILES DOES NOT RELIEVE THE CONTRACTOR'S RESPONSIBILITY FOR PROPER CHECKING AND COORDINATION OF DIMENSIONS, DETAILS,

3. DIMENSIONS AND ELEMENT SIZES AND LOCATIONS IN THE ELECTRONIC FILES MAY NOT BE PRECISE AND, IN SOME CASES, HAVE BEEN INTENTIONALLY ALTERED FOR PRESENTATION PURPOSES. DO NOT SCALE DIMENSIONS ELECTRONICALLY OR OTHERWISE. 4. WHEN USED FOR THE PREPARATION OF SHOP DRAWINGS, ALL INFORMATION NOT APPLICABLE TO THE SUBCONTRACT SHALL BE REMOVED FROM THE DRAWINGS, INCLUDING, BUT NOT LIMITED TO: SHEET NUMBERS, SECTION MARKS, TITLE BLOCKS, AND REFERENCES TO THE CONTRACT DOCUMENTS.

STRUC	TU	RES
1153 TOWN CEN JUPITER, (561) - 9 AM-STRUC	ITER DRIVE FL 33458 51 - 0099 TURES.CO	E #201 M
State the state of	ne Details Malige MAN Néldelstsive	
PRINTED COPIES OF THIS DOC SIGNED AND SEALED. ALL IT ARE TO THE BEST OF THE COMPLY WITH THE APPLIC MATERIAL SPECIFICATION THESE DOCUMENTS AND SP THE PROPERTY OF AM STRU USED BY THE OWNER OR O WITHOUT WRITTEN APPRO	CUMENT ARE N EMS AND ELE ENGINEER'S I ABLE BUILDIN S. OWNERSHIF ECIFICATIONS JCTURES AND THERS ON OTH DVAL BY AM S	IOT CONSIDERED MENTS SHOWN (NOWLEDGE G CODES AND P AND USE OF SHALL REMAIN SHALL NOT BE HER PROJECTS TRUCTURES.
ENGINEE	R'S S	EAL
HND McC E-87 FE-85 ON	TEREP CHUN	
THIS ITEM HAS BEEN DIGITA ANDREW MCCANN, PE, ON THE	ALLY SIGNED A DATE ADJAC	ND SEALED BY ENT TO THE SEAL.
SIGNED AND SEALED AND THE ON ANY ELEC	UMENT ARE N SIGNATURE N TRONIC COPIE	IUT CONSIDERED IUST BE VERIFIED S.
TIMAN CUSTOM WINDOW SHUTTERS	CONTI	36 Pinewood Ln, Hudson, Ohio, 44236
	SCHEI	DULE
0. INITIAL ISSU	ANCE	03/18/2025
GENERA	L NO ⁻	ΓES
PROJECT #	; ۱۱ ۲.۲	250270 8/2025

STRUCTURAL DRAWING LIST							
SHEET NUMBER	SHEET NAME						
S1	GENERAL NOTES						
S2	GENERAL NOTES						
S3	POST LAYOUT PLAN						
S4	ROOF FRAMING PLAN						
S5	REFLECTED CEILING PLAN						
S6	ELEVATIONS						
S7.0	DETAILS						
S7.1	DETAILS CONT						

SCALE: AS INDICATED

ANCHORS & FASTENERS

1.	ALL BOLTS SHALL BE HOT DIPPED GALVANIZED. OR STAINLESS STEEL & MEET THE REOUIREMENTS OF ASTM A307 GRADE A. WASHERS SHALL BE USED	ADDL
	BETWEEN WOOD & BOLT HEAD & BETWEEN WOOD & NUT CONFORMING TO FEDERAL SPECIFICATION FF-W-92 FOR WASHERS. NUTS SHALL BE INSTALLED	ADJ
	SUCH THAT THE END OF THE THREADED ROD OR BOLT IS AT LEAST FLUSH WITH THE TOP OF NUT.	
2.	BOLT HOLES SHALL BE AT LEAST A MINIMUM OF 1/32" AND NO MORE THAN A MAXIMUM OF 1/16" LARGER THAN THE BOLT DIAMETER.	AFF
3.	NAILS SHALL PENETRATE THE SECOND MEMBER A DISTANCE EQUAL TO THE THICKNESS OF THE MEMBER BEING NAILED THERETO. THERE SHALL BE NOT	ALT
	LESS THAN 2 NAILS IN ANY CONNECTION.	APPROX
4.	DRY WOOD MAY SPLIT MORE EASILY. IF WOOD TENDS TO SPLIT, PRE-BORING HOLES SHALL BE USED WITH DIAMETERS NOT EXCEEDING 3/4" OF THE NAIL	ABCH
	DIAMETER OR USE A 5/32" BIT FOR SDS SCREWS. A FASTENER THAT SPLITS THE WOOD SHALL BE REEVALUATED PRIOR LOADING THE CONNECTION.	
5.	ANCHORS SHALL BE INSTALLED IN ACCORDANCE WITH MANUFACTURERS' RECOMMENDATIONS. MINIMUM EMBEDMENT SHALL BE AS NOTED HEREIN.	ASD
	MINIMUM EMBEDMENT AND EDGE DISTANCE ARE DEPTHS INTO SOLID SUBSTRATE AND DO NOT INCLUDE THICKNESS OF STUCCO, FOAM, BRICK, AND OTHER	
	WALL FINISHES.	B/
6.	ANCHOR QUANTITIES INDICATED IN DETAILS ARE FOR GRAPHICAL PURPOSES ONLY. DO NOT SCALE DIAMETER, LENGTH, OR PENETRATION(S). HEAD STYLE(S)	BLDG
_	ARE FREELY INTERCHANGEABLE.	
7.	MECHANICAL ANCHORS (EXPANSION ANCHORS/EXPANSION BOLTS) INTO EXISTING CONCRETE AS SHOWN ON THE STRUCTURAL DRAWINGS SHALL BE ONE	BLKG
	OF THE FOLLOWING PRODUCTS:	BP
	A. KWIK BULT IZ ANCHURS MANUFACTURED BY HILTI FASTENING SYSTEMS	вот
	B. STRUNG-BULT 2 ANCHORS MANUFACTURED BY SIMPSUN STRUNGTIE CUMPANY	BTWN
0	C. POWER-STUDT SD2 ANGHORS MANUFACTURED BY DEWALT MEQUANICAL ANGUODS (EVERNOION ANGUODS (EVERNOION DOLTS) INTO EVICTING CONCRETE MASONEV AS SUGMN ON THE STRUCTURAL DRAWINGS SUALL	DIVIN
8.	MECHANICAL ANCHORS (EXPANSION ANCHORS/EXPANSION BULTS) INTO EXISTING CONCRETE MASONRY AS SHOWN ON THE STRUCTURAL DRAWINGS SHALL	
	DE UNE OF THE FOLLOWING PRODUCTS:	С
		CFS
q	SCREW ANCHORS INTO EXISTING CONCRETE AND CONCRETE MASONRY AS SHOWN ON THE STRUCTURAL DRAWINGS SHALL BE ONE OF THE FOLLOWING	01
0.	PRODUCTS:	CL
	A. KWIK HUS EZ ANCHORS MANUFACTURED BY HII TI FASTENING SYSTEMS	CLR
	B. TITEN HD ANCHORS MANUFACTURED BY SIMPSON STRONGTIE COMPANY	CMU
	C. SCREW-BOLT+ ANCHORS MANUFACTURED BY DEWALT	00
10.	. ADHESIVE ANCHORS (EPOXY ANCHORS/DRILL & EPOXY) INTO EXISTING CONCRETE AS SHOWN ON THE STRUCTURAL DRAWINGS SHALL BE ONE OF THE	
	FOLLOWING ADHESIVE PRODUCTS:	CONC
	A. HIT-HY200 EPOXY ADHESIVE WITH HAS ROD MANUFACTURED BY HILTI FASTENING SYSTEMS	CONN(S)
	B. AT-XP ADHESIVE MANUFACTURED BY SIMPSON STRONGTIE COMPANY WITH AN ALL-THREAD F1554 GRADE 36 STEEL ROD	CONST
	C. PURE110 + EPOXY ADHESIVE MANUFACTURED BY DEWALT WITH AN ALL-THREAD F1554 GRADE 36 STEEL ROD	CONT
11.	ADHESIVE ANCHORS (EPOXY ANCHORS/DRILL & EPOXY) INTO EXISTING CONCRETE MASONRY AS SHOWN ON THE STRUCTURAL DRAWINGS SHALL BE ONE OF	0011
	THE FOLLOWING ADHESIVE PRODUCTS:	COORD
	A. HIT-HY70 INJECTION ADHESIVE WITH HAS ROD MANUFACTURED BY HILTI FASTENING SYSTEMS	
	B. AT-XP ADHESIVE MANUFACTURED BY SIMPSON STRONGTIE COMPANY WITH AN ALL-THREAD F1554 GRADE 36 STEEL ROD	D&E
	C. AC100+ GOLD MANUFACTURED BY DEWALT WITH AN ALL-THREAD F1554 GRADE 36 STEEL ROD	db
12.	ADHESIVE FOR ANCHORING REINFORCING BARS (REBAR) INTO EXISTING CONCRETE AS SHOWN ON THE STRUCTURAL DRAWINGS SHALL BE ONE OF THE	uu -
	FOLLOWING ADHESIVE PRODUCTS:	o
	A. HIT-HYZUU EPUXY ADHESIVE MANUFACTURED BY HILTI FASTENING SYSTEMS	Ø
	B. AT-XP ADHESIVE MANUFACTURED BY SIMPSON STRUNGTE COMPANY	DIAG
12		דיייב דיווענפי
10.	MISSING OR MISPLACED CAST-IN-PLACE ANCHORS.	
14.	SUBSTITUTION REQUESTS FOR ALTERNATIVE PRODUCTS SHALL BE SUBMITTED TO THE STRUCTURAL ENGINEER OF RECORD WITH CALCULATIONS THAT ARE	DL
	PREPARED AND SEALED BY A LICENSED PROFESSIONAL ENGINEER. CALCULATIONS SHALL SHOW THAT THE SUBSTITUTED PRODUCT WILL ACHIEVE AN	DWG(S)
	EQUIVALENT CAPACITY USING THE APPROPRIATE DESIGN PROCEDURE REQUIRED BY THE REFERENCED BUILDING CODE.	
15.	LOCATE, BY NON-DESTRUCTIVE MEANS, ALL EXISTING REINFORCEMENT, AND AVOID DURING INSTALLATION OF ANCHORS. IF EXISTING REINFORCEMENT	
	LAYOUT PROHIBITS THE INSTALLATION OF ANCHORS AS INDICATED ON THE STRUCTURAL DRAWINGS, THE CONTRACTOR SHALL NOTIFY THE STRUCTURAL	
	ENGINEER OF RECORD IMMEDIATELY.	
16.	HOLES SHALL BE DRILLED AND CLEANED, AND ANCHORS SHALL BE INSTALLED PER THE MANUFACTURER'S PUBLISHED INSTALLATION INSTRUCTIONS.	
	DEFECTIVE OR ABANDONED HOLES SHALL BE FILLED WITH NON-SHRINK GROUT OR AN INJECTABLE ADHESIVE MATCHING THE ADJACENT CONCRETE	
	COMPRESSIVE STRENGTH.	
17.	MASONRY ANCHORS SHALL NOT BE INSTALLED IN HOLLOW CORE MASONRY. IF INSTALLATION INTO HOLLOW CORE MASONRY IS DESIRED, SUBMIT	
40	ALTERNATIVE PRODUCT FOR REVIEW AND APPROVAL BY THE STRUCTURAL ENGINEER OF RECORD.	
40		

18. MASONRY ANCHORS SHALL NOT BE INSTALLED IN HEAD JOINTS. 19. IN ADDITION TO THE MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS, THE FOLLOWING GUIDELINES SHALL BE FOLLOWED FOR INSTALLATION OF ADHESIVE ANCHORS:

1. ADHESIVE ANCHORS SHALL BE INSTALLED IN CONCRETE HAVING A MINIMUM AGE OF 21 DAYS AT TIME OF ANCHOR INSTALLATION. CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 2,500 PSI AT THE TIME OF INSTALLATION UNLESS HIGHER STRENGTH IS REQUIRED PER THE MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS.

2. ADHESIVE ANCHORS SHALL BE INSTALLED IN DRY CONCRETE, AND DURING DRY CONDITIONS.

3. ADHESIVE ANCHORS SHALL BE INSTALLED IN HOLES PREDRILLED WITH A CARBIDE TIPPED DRILL BIT.

4. ADHESIVE ANCHORS SHALL BE INSTALLED WITHIN THE TEMPERATURE RANGE SPECIFIED IN THE MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS, BUT NOT OUTSIDE OF THE DESIGN TEMPERATURE RANGE. LOADS SHALL NOT BE APPLIED TO ADHESIVE ANCHORS UNTIL THE FULL CURING TIME ASSOCIATED WITH THE INSTALLATION TEMPERATURE HAS ELAPSED.

20. INSTALLATION OF ADHESIVE ANCHORS SHALL BE PERFORMED BY PERSONNEL CERTIFIED BY AN APPLICABLE CERTIFICATION PROGRAM. CERTIFICATION SHALL INCLUDE WRITTEN AND PERFORMANCE TESTS IN ACCORDANCE WITH THE ACI/CRSI ADHESIVE ANCHOR INSTALLER CERTIFICATION PROGRAM, OR EQUIVALENT.

21. SPECIAL INSPECTIONS SHALL BE PROVIDED FOR POST-INSTALLED ANCHORS IN ACCORDANCE WITH THE ANCHOR MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS AND/OR EVALUATION REPORTS, UNLESS MORE SPECIFIC REQUIREMENTS ARE SPECIFIED IN THE CONSTRUCTION DOCUMENTS. 22. CONTINUOUS INSPECTION SHALL BE PROVIDED FOR ADHESIVE ANCHORS INSTALLED IN HORIZONTAL OR UPWARDLY INCLINED ORIENTATIONS TO RESIST SUSTAINED TENSILE LOADS.

23. HOLE DRILLING AND INSTALLATION OF ADHESIVE ANCHORS SHALL BE IN ACCORDANCE WITH MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS. ANCHORS SHALL BE INSTALLED IN CONCRETE DRY CONDITION.

ABBREVIATIONS		ABBREVIATIONS		ABBREVIATIONS		ABBREVIATIONS
ADDITIONAL	EA	EACH	К	KIPS (1,000 POUNDS)	PAF	POWDER ACTUATED FASTENER
ADJACENT	EF	EACH FACE	KLF	KIP PER LINEAR FOOT	PERP	PERPENDICULAR
ABOVE FINISHED FLOOR	EJ	EXPANSION JOINT	KSF	KIP PER SQUARE FOOT	PL	PLATE
ALTERNATE	EL	ELEVATION	KSI	KIPS PER SQUARE INCH	PLF	POUNDS PER LINEAL FOOT
APPROXIMATE	EMB	EMBED			PREFAB	PRE-FABRICATED
ARCHITECT OR ARCHITECTURAL	EOS	EDGE-OF-SLAB	L	LENGTH	PSF	POUNDS PER SQUARE FOOT
ALLOWABLE STRESS DESIGN	EQ	EQUAL	LB(S)	POUND(S)	PSI	POUNDS PER SQUARE INCH
	EW	EACH WAY	LL	LIVE LOAD	PT	POST-TENSIONED
BOTTOM OF	EXIST	EXISTING	LLH	LONG LEG HORIZONTAL		
BUILDING	EXP	EXPANSION	LLV	LONG LEG VERTICAL	REF	REFERENCE
BLOCKING	EXT	EXTERIOR	LRFD	LOAD RESISTANCE FACTORED	REINF	REINFORCE(D) (ING) OR (MENT)
BASE PLATE				DESIGN	REQ(D)	REQUIRE(D)
BOTTOM	F/F	FACE-TO-FACE	LSH	LONG SIDE HORIZONTAL	REV	REVISION
BETWEEN	FF	FINISH FLOOR	LSV	LONG SIDE VERTICAL	RTU	ROOF TOP UNIT
	FND	FOUNDATION	LTS	LAP TENSION SPLICE		
COMPRESSION	FS	FAR SIDE	LWC	LIGHT WEIGHT CONCRETE	SCHED	SCHEDULE(D)
COLD-FORMED STEEL	FT	FEET			SF	SQUARE FOOT (FEET)
CAST-IN-PLACE	FTG	FOOTING	Μ	MOMENT	SIM	SIMILAR
CENTER LINE			MAX	MAXIMUM	SMS	SHEET METAL SCREW
CLEAR OR CLEARANCE	GA	GAGE, GAUGE	MC	MOMENT CONNECTION(S)	SOG	SLAB-ON-GROUND
CONCRETE MASONRY UNIT	GALV	GALVANIZED	MEP	MECHANICAL, ELECTRICAL,	SPEC(S)	SPECIFICATION(S)
COLUMN	GB	GRADE BEAM		PLUMBING, FIRE PROTECTION	SS	STAINLESS STEEL
CONCRETE	GC	GENERAL CONTRACTOR	MFR		STD	STANDARD
CONNECTION(S)			MID	MIDDLE	STIFF	STIFFENER
CONSTRUCTION	HCA	HEADED CONCRETE ANCHORS	MIN	MINIMUM	SYM	SYMMETRICAL
CONTINUOUS	HORIZ	HORIZONTAL				
COORDINATE	HSS	HOLLOW STRUCTURAL SECTION	NIC		Т	TENSION
			NS	NEAR SIDE	T&B	TOP AND BOTTOM
DRILL & EPOXY	ID	INSIDE DIAMETER	NIS		T/	TOP OF
REINFORCING BAR DIAMETER	IF	INSIDE FACE	NWC	NORMAL WEIGHT CONCRETE	TYP	TYPICAL
DEGREE(S)	IN	INCH	00			
DIAMETER	INFO	INFORMATION			UNO	UNLESS NOTED OTHERWISE
DIAGONAL	INT	INTERIOR	UU OF			
DIMENSION(S)					V	SHEAR
DEAD LOAD	JST(S)	JOIST(S)			VERT	VERTICAL
DRAWING(S)			UPP	OFFUSILE	VIF	VERIFY IN FIELD

WITH WITHOUT WWR WELDED WIRE REINFORCEMENT

W/

W/O

STR			1 RES			
1153 TOWN CENTER DRIVE #201 JUPITER, FL 33458 (561) - 951 - 0099 AM-STRUCTURES.COM						
	Bings . SI	MAN MAN MAN MASIE				
PRINTED COPIES SIGNED AND SE ARE TO THE COMPLY WITH MATERIAL SP THESE DOCUME THE PROPERTY USED BY THE (WITHOUT WR	OF THIS DOC ALED. ALL IT BEST OF THE I THE APPLIC ECIFICATION INTS AND SP OF AM STRU OWNER OR O ITTEN APPRO	COMENT ARE N EMS AND ELEI ENGINEER'S K ABLE BUILDIN S. OWNERSHIF ECIFICATIONS JCTURES AND THERS ON OTH OVAL BY AM S	OT CONSIDERED WENTS SHOWN (NOWLEDGE G CODES AND P AND USE OF SHALL REMAIN SHALL REMAIN SHALL NOT BE IER PROJECTS TRUCTURES.			
ENG		R'S S DF OK	EAL			
Seal E	E-8 PEGIS S/ON xp: 12/31/25	TEREP AL EN (1) (COA Exp: 06/30	/26			
THIS ITEM HAS ANDREW MCCANN PRINTED COPIES SIGNED AND SEAL C	BEEN DIGITA I, PE, ON THE OF THIS DOC ED AND THE IN ANY ELEC	ALLY SIGNED A DATE ADJACE CUMENT ARE N SIGNATURE M TRONIC COPIES	ND SEALED BY ENT TO THE SEAL. OT CONSIDERED IUST BE VERIFIED 3.			
TIMAN CUSTOM WINDOW	SHUTTERS	CONTI	36 Pinewood Ln, Hudson, Ohio, 44236			
ISSU NO. DES O. INIT	JANCE SCRIPTIOI	SCHEI N ANCE	DULE DATE 03/18/2025			
ELEVATIONS						
PROJEC DATE)T #	2 03/1	250270 8/2025			
DWN CHK		-	MHR AEM			
	S	6				
S	CALE: AS)			

1. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS.

STRUCTURES
JUPITER, FL 33458 (561) - 951 - 0099
AM-STRUCTURES.COM
BIJOS · Shades · SUNISS
PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED. ALL ITEMS AND ELEMENTS SHOWN ARE TO THE BEST OF THE ENGINEER'S KNOWLEDGE COMPLY WITH THE APPLICABLE BUILDING CODES AND MATERIAL SPECIFICATIONS. OWNERSHIP AND USE OF THESE DOCUMENTS AND SPECIFICATIONS SHALL REMAIN THE PROPERTY OF AM STRUCTURES AND SHALL NOT BE USED BY THE OWNER OR OTHERS ON OTHER PROJECTS WITHOUT WRITTEN APPROVAL BY AM STRUCTURES.
ENGINEER'S SEAL
ANDREW McCANN
E-87255 PEG/STERED ONAL ENTITY Seal Exp: 12/31/25
THIS ITEM HAS BEEN DIGITALLY SIGNED AND SEALED BY ANDREW MCCANN, PE, ON THE DATE ADJACENT TO THE SEAL. PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFIED ON ANY ELECTRONIC COPIES.
TIMAN CUSTOM WINDOW SHUTTERS BHUTTERS CONTI 36 Pinewood Ln, Hudson, Ohio, 44236
ISSUANCE SCHEDULE
NO. DESCRIPTION DATE
POST LAYOUT PLAN
PROJECT # 250270
DATE 03/18/2025
CHK AEM
S3
SCALE: AS INDICATED

ROOF FRAMING PLAN

3/4" = 1'-0"

NOTES:

DENOTES (2) 1/2" Ø SS LAG SCREWS.
 CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS.
 ZONES 1 & 2 DENOTE **R-BLADE AZENCO** PRODUCT.

1 REFLECTED CEILING PLAN 3/4" = 1'-0"

STRUCTURAL CONNECTORS

3/8" Ø X 5" HEX LAG SCREW SS

B

D

6" = 1'-0"

(And	3/8" Ø X 6" HEX LAG SCREW SS		M12 X 120mm PIN
Mar		Q2	M4.8 X 16mm PAN HEAD TORX BIT SHEET METAL SCREW
ALAL IS	5/8 VX 0 HEX LAG SCHEW S5	Q3	#14 X 3/4" HEX HEAD SELF-DRILL 316 SS SCR
And	1/2" Ø X 6" HEX LAG SCREW SS	Q4	M8 X 40mm PAN HEAD TORX BIT SHEET METAL SCREW
	1/4" Ø X 3" HEX LAG SCREW SS	Q5	HTK10-1.00 HEX SELF-TAPPING 410SS #10 X 1
	3/8" Ø X 5" HEX SCREW ANCHOR 316 SS	Q6	M8 X 40mm FLAT HEAD TORX BIT SHEET METAL SCREW
	#8 X 1" HWH SDS 410 SS	Q7	M4.8 X 25mm FLAT HEAD TORX BIT SHEET METAL SCREW
		Q12	M8 X 80mm SOCKET CAP HEX HEAD PARTIALI THREADED SCREW
	1/2 WX3 DEWALT SCHEW BULT+ STO SS	Q13	M8 SS NUT
$\bigcirc \bigcirc$	RISER KIT: (1) 3/8"-16 Ø X 7" SS HEX CAP BOLT, (2) 3/8" X 7/8" SS FLAT WASHERS, (1) 3/8"-16 Ø SS HEX NUT	Q14	M5.5 X 25mm PAN HEAD SCREW
	1/4" Ø X 4" HWH SDS 410 SS	Q15	M9.5 X 60mm PIN
$)$ $\bigcirc(\bigcirc)$	1/2" Ø F1554 THREADED ROD W/ DEWALT PURE110+ EPOXY	Q17	1/8"Ø X 3/4" PIN
	#14 X 1" HWH SDS 410 SS	Q18	#14 X 2" SMS SCREW SS410
		(Q21)	1/2" Ø X 2" SS HEX HEAD SCREW

Q22

1/2" Ø SS NUT

∧M | STRUCTURES

Project # 250270

CALCULATION COVER SHEET

Calculations Prepared For:

TIMAN WINDOW TREATMENTS, INC 4533 WILLOW PARKWAY CLEVELAND, OH

Project:

CONTI **36 PINEWOOD LANE** HUDSON, OH

Subject:

CANOPY CALCULATIONS

REFERENCE SEALED DRAWING BY BELOW-SIGNED ENGINEER FOR ALL NOTES AND DETAILS INCORPORATED HEREIN

This item has been digitally signed and sealed by Andrew McCann P.E. on date adjacent to the seal. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Project # 250270 - Conti							
Timan Window Treatments, Inc Conti							
		DESIGN CRITE					
		<u>DEGIGIT GITTE</u>					
Enter custom	loads:						
Vult =	115 mph						
Exposure:	С						
Ground Snow Load:	25.00 psf						
Live Load:	20.00 psf		Type of project:		Residential		
Dead Load:	5.0 psf						
Wind Porosity:	50%						
Roof Type:	Louvered						
These are the loads that this calcula	tor will utiliz	e:					
Vult =	115 mph						
Exposure:	С		Deflection criteria:	L / 180	1		
Ground Snow Load:	25.00 psf						
Design Live Load:	20.00 psf						
Wind Porosity:	5.00 psi						
wind Folosity.	0070						
Critical positive grav comb. (+):	30.00 psf						
Critical negative uplift comb. (-):	- 3.00 psf						
Critical lateral pressure (+):	18.32 psf						
	<u>S`</u>	YSTEM CONFIGUE	RATION:				
Louvers:		-					
Overall Canopy Length:	24.3 ft	-					
Overall Canopy Width: Roof Slope	0.0 °	-					
	LOUVER B	LADES CLOSED CHE	CK 6063-T6				
Sx 2.9166	in^3	Mmax 46	0.88 lb-ft				
Sy 1.26438	in^3	Stress	7.12 ksi		Stress Check:	78.5%	
Length of Longest Louver Blade:	12 π	2 IN			Louver Length:	12.2 π	
		U					

AM STRUCTURES 1153 Town Center Drive #201 Jupiter, FL 33458 PH: 561-951-0099

∧M | STRUCTURES

Foundation

SEE SKYCIV						
Fo	oundation Rea	ctions (K,K-	FT)			
	Р	V	М			
D	0.335	0.000	0.000			
W	0.629	0.458	3.296			
E	0.010	0.055	0.326			
Lr	1.032	0.000	0.000			
S	1.675	0.000	0.000			

Baseplate	4-Bolt	
Plate Thickness:	0.5	in

Spacing: 8.625 Width: 10.625 in

in

SE	E ANCHOR CALC
35%	Okay

Worl	k Prepared For:	Timan Window Treatments, Inc			
	Project	250270 - Conti			
		DESIC	N CRITERIA:		
H =	8.50	ft, Mean Roof Height		ASCE:	7-16
Θ =	0.0 °	Roof Slope F= 0.0	000 I	Exposure:	С
Vult =	115	mph, Wind Velocity (3-Second Gust)	Building	Category:	II
Kd =	0.85	Directionality Factor			
G =	0.85	Gust Effect Factor		Snow:	Y
Kz =	0.85	Velocity Pressure Coefficient	Ground Sr	now Load: 2	25.00 psf
Kzt =	1	Topographic Factor	Design Sr	now Load:	25.00 psf
			Design L	live Load:	20.00 psf
			Design De	ead Load:	5.0 psf
	Wind Flow:	Clear	Win	d Porosity:	50%
L =	24.33	ft, Overall Canopy Length		Method:	ASD
W =	17.67	ft, Overall Canopy Width	Live Load	Lr:	15.40 psf
a =	3.00 ft		Reduction Per	Lo:	20.00 psf
			IBC	R1: 0	0.770111111
			1607.13.2.1	R2:	1
		LOADS ON COM	PONENTS & CLADDING:		
		(Roof Decking	and Decking Fasteners)		
	10.17				
L1 =	12.17	π, Eπective Deck Panel Length			
VV1 =	4.06 π		A > 4 O*-40		
A =	49.34 11-2	Ellective wind Area, LT WT	<u>A > 4.0 a 2</u>		
CNn =	0.8	Positive Pressure Coefficient			
CNn =	-0.5	Negative Pressure Coefficient			
az =	12.21 psf	Velocity Pressure w/ Porosity			
WLp =	9.39 psf	Positive Wind Load, = gz*G*CNp			
WLn =	-8.00 psf	Negative Wind Load, = qz*G*CNn			
Grav =	30.00 psf	D + (Lr or S or R)	Critical	positive DP	
opint –	-3.00 psi	0.8D + 0.7E	Critical	negative DP	
		LOADS ON MAIN WIND	FORCE RESISTING SYSTE	<u>M:</u>	
		(Deams, Co			
Wind Direction, y	= 0°		<u>Wind Direction, $\gamma = 180$</u>	<u>0°</u>	
CNWa =	1.2	Cnw value, load case A	CNWa =	1.2 Cnv	v value, load case A
CNWb =	-1.1	Cnw value, load case B	CNWb =	-1.1 Cnv	v value, load case B
CNLa =	0.3	Cnl value, load case A	CNLa =	0.3 Cnl	value, load case A
CNLb =	-0.1	Cnl value, load case B	CNLb =	-0.1 Cnl	value, load case B
Wind Direction	- 00%				
	<u>- 90-</u> -0 8			0.8 Cox	value, load case B
Civa –	-0.0	Chi value, ioad case A	CIND -	0.0 011	
CNp =	0.8	Critical Positive Pressure Coefficient			
CNn =	-0.5	Critical Negative Pressure Coefficien			
		-			
WLp =	9.39 psf	Critical Positive Wind Load, = qz*G*0	Np		
WLn =	-8.00 psf	Critical Negative Wind Load, = qz*G'	CNn		
Grav =	30.00 psf	D + (Lr or S or R)	Critical	positive DP	
Uplift =	-3.00 psf	0.6D + 0.7E	Critical	negative DP	
			CANODY FASCIA		
001-	15	Combined Not Dressure Coefficient	n windword foogie		
GCpn1 =	1.5 4	Combined Not Pressure Coefficient of	n winuwaru iascia		
Gophi =	-1	Complited Net Fressure CoelifClent (
WL =	18.32 psf	Average Wind Load on Fascia, qz*	GCpn*0.6		

Work Pre	pared For: Timan Window Treatments, Inc Project: 250270 - Conti		
Snow Loads	<u>.</u>	w lu2	
Pg =	25 psf, Ground snow load		
Ce =	1.0 Exposure factor (Table 7-2)	-	
Ct =	1.2 Thermal factor (Table 7-3)	h	
ls =	1.0 Importance factor (Table 7-4)		
Evs =	1.00 ° Eave slope		
S =	57.29 Roof slope run for a rise of one		
VV =	15.00 ft, Horizontal distance from eave to	ridge	
γ =	17.25 pcf Snow density Eq. 7-3: 0.13(Pg)+14	< 30 psf	
Cs =	1.00 Slope factor at 1° (Figure 7-2)		
Balanced Sr	now Loads		
Pf =	21.00 psf Snow load on flat roofs (slope < 5°)): Pf = max[(I)(20),(0.7)(Ce)(Ct)(I)(Pg)]	
Ps =	21.00 psf Sloped roof snow loads (slope > 5°	'): Ps = (Cs)(Pf)	
Drifts on Lo	wer Roofs (Aerodynamic Shade)		
lu1=	20.00 ft, Length of upper roof		
lu2=	15.00 ft Length of lower roof projection		
hc=	11.50 ft, Height from top of lower roof to t	op of eave	
Drift snow r	equired, hc/hb>0.2		
hb=	1.22 ft Height of balanced snow: Ps/(γ)		
hd1=	1.34 ft Height of snow drift (Fig 7-9): 0.43(lu)^(1/3)(Pg+10)^(1/4)-1.5 (Leeward)	
hd2=	0.81 ft Height of snow drift (Fig 7-9): 0.43(lu)^(1/3)(Pg+10)^(1/4)-1.5 (Windward)	
ASCE 7-1	0/7-16 - Rain-On-Snow Surcharge (7.10)	Unreducible Snow Load	Yes
ls Pg	20 PSF or less? NO	Include Uniform Dist. Ice Load?	Yes
		Include surcharge load?	Yes
hd=	1.34 ft Governing drift height		
w=	5.36 ft Governing drift width		
hend=	0.00 ft Drift height at edge of lower roof		
pd=	11.55 psf Surcharge load Uniform Distribution	n Over Drift Width	
	4.12 psf Surcharge Load Distributed over T	ributary Area	
SL=	25.00 psf Unreducible Roof Snow Load		

Work P	repared For: Project:	Timan Window Treatm 250270 - Conti	nents, Inc				
Ice Load Due t	o Freezing R	tain (per ASCE 7-16 - C	hapter 10	<u>)</u>)			
Acounting for A	ccumulating I	ce on Louver Blades					
t _i =	1.50	Nominal Ice Thickness ((in.)		Louver (6" O.C.)	
K _{zt} =	1.0	Topographic Factor			Depth (d)	6.000 in.	
Z =	8.50 ft	System Height		,	Width (bf)	1.866 in.	
$I_i =$	1.00	Importance Factor			Thickness	.065 in.	
$I_d =$	56.00 II	Ice Density (56 pcf defau Occupancy Category	ult)	l	Length	12.17 ft	
		occupancy category					
Per Table 10-1							
t _d =	1.31	in, Design Ice Thickness	5	$t_d = t_i^* I_i^* f_z^* (K$	$(z_{zt})^{0.35}$		
VV _i =	6.11 psf	Weight of Ice (for td)		W _i = (td/12)*	l _d		
F _z =	0.8732			$F_z = (Z/33)^{0.2}$.1		
Ice Loading	<u>Ch 10.4</u>						
Louver Ice Load	ding						
D _c =	6.32 in	Circumscribing Diameter	r of Louve	er	$D_c = \sqrt{d^2 + bf}$	2	
$A_i =$	31.38 in^2	Area of Ice = πt_d *(E	D _c +t _d)				
W _{i(Louver)} =	12.21 plf	Uniform Distributed Ice L W _i = (A _i /144)*I _d	Load (Sing	gle Louver Bl	lade)		
Louver Beam lo	ce Loading fro	m Louver Blades					
W _{i(Louver)} =	12.21 plf	Distributed Ice Load on I	Louver Bla	ade			
L=	12.17 ft	Length of Longest Louv	ver Blade				
W _{i(Beam)} =	74.2 plf	Calculated Ice Load on I	Louver Be	eam			
		W _{i(Beam)} = W _{i(Louver)} *Louve	er Length*	(1.866"/6")			
		(6" O.C. Louvers In Ope	n Position	1)			
Wi _{(Louver})=	12.21 plf	Uniform Linear Ice Loa	ad (Louve	er Blade)			
W _{i(Beam)} =	148.49 plf	Uniform Linear Ice Loa	ad (Louve	r Beam)			
(Deality	(W _{i(Beam)}	doubled for intermediate	e Louver B	Beams)			
	. ,						

Work P	repared For:	Timan Window T	reatments, Inc			
	Project.	250270 - Conti				
		Seis	mic Loads	Criteria		
S _s =	0.134	Max considered resp	onse acceleration fo	r a period of ().2 s	
S ₁ =	0.049	Max response accele	eration at period of 1	s		
Height o	of Structure =	• 8.50 ft		Attached t	to host structure?	Y
Site Class		D				
F _a =	1.6	short period amplif	ication factor			
F _v =	2.4	long period amplifi	cation factor			
S _{MS} =	0.214	modified spectral res	ponse acceleration a	It a period of	0.2 s	F _a *S _s
S _{M1} =	0.118	modified spectral res	ponse acceleration a	t a period of	1.0 s	F _v *S ₁
			-			
Spe	ctral Res	sponse Acce	eleration Pa	ramete	rs	
S _{DS} =	0.143	Design spectral resp	onse acceleration at	a period of 0.	2 s	(2/3)*S _{ms}
S _{D1} =	0.078	design spectral respo	onse acceleration at a	a period of 1.	0 s	(2/3)*S _{M1}
	Struct	ural Design	Requireme	nts		
T _a =	0.100	Approximate funda	amental period (s)			$C_t * h_n^x$
$T_L =$	12.0	Long Transition Pe	eriod (s)			
E _v =	0.100	Vertical Seismic	Loads (PSF)			
Rp =	2.50					
ap=	2.500					
Ip=	1.000					
10/10-						
vvp=	334.93 lbs		Tributary V	Veight		
ΓΡ- FnMΔX=	19.15 IDS	,	Seismic Desig	jn ⊢orce	0.4ap"SDS*Wp/((πρ/ip)"(1+2(Z/N))
FpMIN=	14,36 lbs	6			<u>0</u> =	2.00
P=	1				SERVICE =	0.7
113.94 lb-ft		Effect	ive Seismic Mon	nent		(H*Fp)
			SDF OK?		OK	

\mathbf{M}	STRUCTURES

Work Prepared For:	Timan Windo	w Treatments,	Inc				
Project:	250270 - Con	ti					
Γ							
	Specific	cations for Al	uminum Str	uctures (Build	ings)		
		Allowat	ble Stress D	lesign			
Design Check of Azenco L	LOUVE	R BLADE CHI	EGK 2 14727''/1 (406" 6063-T6 /		ho	
Per 2020 Aluminum Design	Manual			400 0000-107		<u></u>	
Ŭ				Critically			
Alloy:	6063	Temper:	Т6	Welded:	Ν		
,							
MEMBER PROPERTIES							
				1	-lange width	9 963"	
				Flan	de thickness	0.087"	
					Web height	2 147"	
				W	eb thickness	0.087"	
	-	Mome	ent of inertia	about axis para	llel to flange	1.04 in^4	
	2	Mor	ment of iner	ia about axis pa	rallel to web	17.38 in^4	
2			Section r	modulus compre	ession x-axis	0.78 in^3	
	0.087		Se	ction modulus te	ension x-axis	1.31 in^3	
	b.B542=2.409	~	Se	ction modulus te	ension v-axis	3.16 in^3	
			Section (modulus compre	ession v-axis	3.95 in^3	
	Ra	adius of gyratio	on about cen	troidal axis para	llel to flange	0.71 in	
	1	Radius of gyra	tion about ce	entroidal axis pa	rallel to web	2.92 in	
				Tors	ion constant	1.26 in^4	
			Cros	ss sectional area	a of member	2.04 in^2	
				Plastic sect	ion modulus	1.30 in^3	
				Warp	ing constant	5.73 in^6	
MEMBER SPANS					-		
	Unsuppo	orted member I	length (betw	een supports)	L =	12.17 ft	
Unbraced	length for bend	ing (between b	pracing again	nst side-sway)	Lb =	12.17 ft	
	-		Effective	e length factor	<i>k</i> =	1.0	
			Tensile ulti	mate strength	Ftu =	30 ksi	
Tensile yield strength Ftv =						25 ksi	
		С	ompressive	yield strength	Fcy =	25 ksi	
			Shear ulti	mate strength	Fsu =	18 ksi	
			Shear	yield strength	Fsy =	15 ksi	
		Compres	ssive modul	us of elasticity	E =	10,100 ksi	
				-			

BUCKLING CONSTANTS				
Compression in columns	& beam flanges (Intercept)	Bc =	27.64 ksi	
Compression in colum	Dc =	0.14 ksi		
Compression in columns & b	eam flanges (Intersection)	Cc =	78.38 ksi	
Compressi	on in flat plates (Intercept)	Bp =	31.39 ksi	
Compre	ession in flat plates (Slope)	Dp =	0.17 ksi	
Compression	in flat plates (Intersection)	Cp =	73.55 ksi	
Compressive bending stress in solid r	ectangular bars (Intercept)	Bbr =	46.12 ksi	
Compressive bending stress in sol	id rectangular bars (Slope)	Dbr =	0.38 ksi	
Shear stre	ess in flat plates (Intercept)	Bs =	18.98 ksi	
Shear	stress in flat plates (Slope)	Ds =	0.08 ksi	
Shear stress	in flat plates (Intersection)	Cs =	94.57 ksi	
Ultimate strength coefficient of flat plates in compres	sion (slenderness limit $\lambda 2$)	k1c =	0.35	
timate strength coefficient of flat plates in compression (si	tress for slenderness > $\lambda 2$)	k2c =	2.27	
Ultimate strength of flat plates in ben	ding (slenderness limit $\lambda 2$)	k1b =	0.50	
Ultimate strength of flat plates in bending (si	tress for slenderness > $\lambda 2$)	k2b =	2.04	
	Tension coefficient	<i>kt</i> =	1.0	
D.2 Axial Tension				
Tensile Yielding - Unwelded Members	[Fty]	Fty_n =	25.00 ksi	
		Ω =	1.65	
		Fty_n /Ω =	15.15 ksi	
Tensile Rupture - Unwelded Members	[Ftu]	Ftu_n =	30.00 ksi	
		Ω =	1.95	
		Ftu_n/Ωt =	15.38 ksi	
AXIAL COMPRESSION MEMBERS				
E.2 Compression Member Buckling				
Axial, gross section subject to buckling	Lower slenderness limit	$\lambda 1 =$	18.23	
	Upper slenderness limit	λ2 =	78.38	
	Slenderness	$\lambda(max) =$	204.57	≥ λ2
	[0.85π²Ε/λ²]	Fc_n =	2.02 ksi	
		Ω =	1.65	
		Fc_n/ Ω =	1.23 ksi	

E.3 Local Buckling

For column elements in uniform compression subject to local buckling, the uniform compressive strength is addressed in Section B.5.4 calculated below.

B.5.4.2 - Flat elements supported on both edges (Flang

B.5.4.2 - Flat elements supported on both edges (Web)

E.4 Buckling Interaction

L.+ Ducking interaction					
Per Table B.5.1		[π²*E/ (1.6*b/tb)²]	Fe(flange) =	3.08 ksi	
		[Fc_n]	Fc_n =	2.02 ksi	
	Fe(flange) > I	Fc_n (E.2 Member Buckling)	Ω =	1.65	
			Fc_n /Ω =	1.23 ksi	
		[π²*E/ (1.6*h/th)²]	Fe(web) =	75.69 ksi	
		[Fc_n]	Fc_n =	2.02 ksi	
	Fe(web) > F	-c_n (E.2 Member Buckling)	Ω=	1.65	
			Fc_n /Ω =	1.23 ksi	
F.2 Yielding and Rupture					
Nominal flexural strength for yielding	and rupture	Limit State of Yielding			
		[Sc*Fcy]	Mnp =	19.43 k-in	
		[Mnp/Sx]	Fb_n =	14.97 ksi	
			Ω =	1.65	
			Fb_n /Ω =	9.07 ksi	
		Limit State of Rupture			
		[Z*Ftu/kt]	Mnu =	38.93 k-in	
		[Mnu/Z]	Fb_n =	30.00 ksi	
			Ω =	1.95	
			Fb_n /Ω =	15.38 ksi	
F.4 Lateral-Torsional Buckling					
Unsymmetric shape subject to latera	I-torsional buckling				
Slende	erness for closed s	hape about the bending axis	λ F.4.2.5 =	11.32	
		Maximum slenderness	$\lambda(max) =$	11.32	< Cc
Nominal flexural strength - lateral-tor	sional buckling				
	[Mnp(1-(λ/Cc))+(π²*E*λ*Sx/Cc^3)]	Mnmb =	18.44 k-in	
		[Mnmb/Sx]	Fb_n =	23.73 ksi	
			Ω =	1.65	
			$Fb_n/\Omega =$	14.38 ksi	
UNIFORM COMPRESSION ELEME	NTS				
B.5.4.2 Flat Elements Supported o	<u>n Both Edges - W</u>	eb & Flange			
Uniform compression strength, flat e	lements supported	on both edges			
		Lower slenderness limit	$\lambda 1 =$	22.8	
		Upper slenderness limit	λ2 =	39.2	
		Flange Slenderness	b/tb =	112.52	≥λ2
		Web Slenderness	h/th =	22.68	≤λ1
		[k2c*√(Bp*E)/(1.6*b/tb)]	Fc_n1 =	7.10 ksi	
			Ω =	1.65	
			Fc_n1/Ω =	4.30 ksi	
		[Fcy]	Fc_n2 =	25.00 ksi	
			Ω =	1.65	
			Fc_n2/Ω =	15.15 ksi	

FLEXURAL COMPRESSION ELEMENT	S				
B.5.5.1 Flat Elements Supported on Bo	<u>th Edges - We</u>	<u>əb</u>			
Flexural compression strength, flat eleme	nts supported of	on both edges			
		Lower slenderness limit	λ1 =	34.73	
		Upper slenderness limit	$\lambda 2 =$	92.95	
		Slenderness	h/th =	22.68	≤λ1
		[1.5*Fcy]	Fb_n =	37.50 ksi	
			Ω =	1.65	
			Fb_n/ Ω =	22.73 ksi	
SHEAR					
G.2 Shear Supported on Both Edges -	Web				
Members with flat elements supported on	both edges	Lower slenderness limit	$\lambda 1 =$	38.73	
		Upper slenderness limit	λ2 =	75.65	
		Slenderness	h/th =	22.68	≤ λ1
		[Fsy]	Fv_n =	15.00 ksi	
			Ω =	1.65	
			Fv_n /Ω =	9.09 ksi	
ALLOWABLE STRESSES					
		Allowable bending stress	Fb =	9.07 ksi	
	Allowabl	e axial stress, compression	Fac =	1.23 ksi	
	AI	lowable shear stress; webs	Fv =	9.09 ksi	
		Elastic buckling stress	Fe =	1.22 ksi	
Weighted average allowa	e stress (per Section E.3.1)	Fao =	6.12 ksi		
	400.00	1L 41			
Mmax	460.88	л-qi			
Stress	<i>1</i> .12	KSI		70 4540/	
Fb	9.07 ksi			78.451%	

Work Prepared For: Project:	Timan Wind 250270 - Co	dow Treatments, onti	Inc			
Г	AL	UMINUM DESIG	N MANUA	_ (2020 EDITION	<u>1)</u>	
	Speci	fications for Alu Allowab	ıminum Stı ole Stress D	uctures (Buildi Design	ngs)	
L						
Check of Azenco Lo	ouver Blade	0.087"x0.087"x9	.9627"/17.3	769" 6063-T6 A	luminum Tu	<u>be</u>
20 Aluminum Design N	Manual					
		_		Critically		
Alloy:	6063	Temper:	Т6	Welded:	N	
c.t=1,556		Mome Mor Radius of gyratio Radius of gyrat	ent of inertia nent of iner Section I Se Section I n about cen ion about c	We about axis paral tia about axis para modulus compre- ction modulus ter toin modulus ter modulus compre- troidal axis paral entroidal axis para Torsi as sectional area	Web height b thickness lel to flange rallel to web ssion x-axis nsion y-axis ssion y-axis ssion y-axis lel to flange rallel to web on constant of member	9.963" 0.087" 17.38 in ⁴ 4 1.04 in ⁴ 4 3.16 in ⁴ 3 3.95 in ⁴ 3 0.78 in ⁴ 3 1.31 in ⁴ 3 2.92 in 0.71 in 1.26 in ⁴ 4 2.04 in ²
b.B551=1.588			010	Plastic secti		5 19 in^3
				Warpi	ng constant	5.73 in^6
ER SPANS				·	-	
	Unsup	ported member l	ength (betw	een supports)	L =	12.17 ft
Unbraced I	ength for ber	nding (between b	racing agai	nst side-sway)	Lb =	12.17 ft
			Effectiv	e length factor	k =	1.0
			Tensile ult	mate strength	Ftu =	30 ksi
			Tensile	yield strength	Fty =	25 ksi
		C	ompressive	yield strength	Fcy =	25 ksi
			Shear ult	mate strength	Fsu =	18 ksi
			Shear	yield strength	Fsy =	15 ksi

BUCKLING CONSTANTS				
Compression in columns	& beam flanges (Intercept)	Bc =	27.64 ksi	
Compression in column	Dc =	0.14 ksi		
Compression in columns & b	eam flanges (Intersection)	Cc =	78.38 ksi	
Compressi	on in flat plates (Intercept)	Bp =	31.39 ksi	
Compre	ession in flat plates (Slope)	Dp =	0.17 ksi	
Compression	in flat plates (Intersection)	Cp =	73.55 ksi	
Compressive bending stress in solid r	ectangular bars (Intercept)	Bbr =	46.12 ksi	
Compressive bending stress in soli	id rectangular bars (Slope)	Dbr =	0.38 ksi	
Shear stre	ess in flat plates (Intercept)	Bs =	18.98 ksi	
Shears	stress in flat plates (Slope)	Ds =	0.08 ksi	
Shear stress	in flat plates (Intersection)	Cs =	94.57 ksi	
Ultimate strength coefficient of flat plates in compres	sion (slenderness limit $\lambda 2$)	k1c =	0.35	
timate strength coefficient of flat plates in compression (st	tress for slenderness > $\lambda 2$)	k2c =	2.27	
Ultimate strength of flat plates in ben	ding (slenderness limit $\lambda 2$)	k1b =	0.50	
Ultimate strength of flat plates in bending (st	tress for slenderness > $\lambda 2$)	k2b =	2.04	
	Tension coefficient	<i>kt</i> =	1.0	
D.2 Axial Tension				
Tensile Yielding - Unwelded Members	[Fty]	Fty_n =	25.00 ksi	
		Ω =	1.65	
		Fty_n /Ω =	15.15 ksi	
Tensile Rupture - Unwelded Members	[Ftu]	Ftu_n =	30.00 ksi	
		Ω =	1.95	
		Ftu_n/Ωt =	15.38 ksi	
AXIAL COMPRESSION MEMBERS				
E.2 Compression Member Buckling				
Axial, gross section subject to buckling	Lower slenderness limit	$\lambda 1 =$	18.23	
	Upper slenderness limit	λ2 =	78.38	
	Slenderness	$\lambda(max) =$	204.57	≥ λ2
	[0.85π²Ε/λ²]	Fc_n =	2.02 ksi	
		Ω =	1.65	
		Fc_n /Ω =	1.23 ksi	

E.3 Local Buckling

For column elements in uniform compression subject to local buckling, the uniform compressive strength is addressed in Section B.5.4 calculated below.

B.5.4.2 - Flat elements supported on both edges (Flang

B.5.4.2 - Flat elements supported on both edges (Web)

E.4 Buckling Interaction

E.4 BUCKING Interaction					
Per Table B.5.1		[π²*E/ (1.6*b/tb)²]	Fe(flange) =	76.04 ksi	
		[Fc_n]	Fc_n =	2.02 ksi	
	Fe(flange) >	Fc_n (E.2 Member Buckling)	Ω=	1.65	
			Fc_n /Ω =	1.23 ksi	
		[π²*E/ (1.6*h/th)²]	Fe(web) =	3.08 ksi	
		[Fc_n]	Fc_n =	2.02 ksi	
	Fe(web) > I	Fc_n (E.2 Member Buckling)	Ω=	1.65	
			Fc_n /Ω =	1.23 ksi	
FLEXURAL MEMBERS					
F.2 Yielding and Rupture					
Nominal flexural strength for yielding	and rupture	Limit State of Yielding			
		[Sc*Fcy]	Mnp =	78.88 k-in	
		[Mnp/Sx]	Fb_n =	25.00 ksi	
			Ω =	1.65	
			$Fb_n/\Omega =$	15.15 ksi	
		Limit State of Rupture			
		[Z*Ftu/kt]	Mnu =	155.83 k-in	
		[Mnu/Z]	Fb_n =	30.00 ksi	
			Ω=	1.95	
			$Fb_n/\Omega =$	15.38 ksi	
F.4 Lateral-Torsional Buckling					
Unsymmetric shape subject to latera	I-torsional buckling	I			
Slendern	ess for any close s	hape about the bending axis	λ F.4.2.5 =	46.09	
		Maximum slenderness	$\lambda(max) =$	46.09	< Cc
Nominal flexural strength - lateral-tor	sional buckling				
	[Mnp(1-(λ/Cc))+(π²*E*λ*Sx/Cc^3)]	Mnmb =	62.60 k-in	
		[Mnmb/Sx]	Fb_n =	19.84 ksi	
			Ω =	1.65	
			$Fb_n/\Omega =$	12.02 ksi	
UNIFORM COMPRESSION ELEME	NTS				
B.5.4.2 Flat Elements Supported o	<u>n Both Edges - W</u>	eb & Flange			
Uniform compression strength, flat el	lements supported	on both edges			
		Lower slenderness limit	$\lambda 1 =$	22.8	
		Upper slenderness limit	λ2 =	39.2	
		Flange Slenderness	b/tb =	22.63	≤λ1
		Web Slenderness	h/th =	112.51	≥λ2
		[Fcy]	Fc_n1 =	25.00 ksi	
			Ω =	1.65	
			Fc_n1 /Ω =	15.15 ksi	
		[k2c*√(Bp*E)/(1.6*h/th)]	Fc_n2 =	7.10 ksi	
			Ω =	1.65	
			Fc_n2/Ω =	4.30 ksi	

FLEXURAL COMPRESSION ELEMENTS					
B.5.5.1 Flat Elements Supported on Both	<u>Edges - \</u> s supporte	<u>Web</u> ad on both edges			
Thexaral compression strength, hat element	s supporte	Lower slenderness limit	$\lambda 1 =$	34 73	
		Upper slenderness limit	$\lambda 2 =$	92.95	
		Slenderness	h/th =	112.51	≥λ2
		[k2b*SQRT(Bbr*E)/(m*h/th)]	Fb n =	19.04 ksi	_ /
			Ω =	1.65	
			Fb_n /Ω =	11.54 ksi	
SHEAR			_		
G.2 Shear Supported on Both Edges - We	eb				
Members with flat elements supported on be	oth edges	Lower slenderness limit	$\lambda 1 =$	38.73	
		Upper slenderness limit	λ2 =	75.65	
		Slenderness	h/th =	112.51	≥λ2
		[π²E/(1.25*h/th)²]	<i>Fv_n</i> =	5.04 ksi	
			Ω =	1.65	
			Fv_n /Ω =	3.05 ksi	
ALLOWABLE STRESSES					
F					
		Allowable bending stress	Fb =	11.01 ksi	
	Allowa	able axial stress, compression	Fac =	1.23 ksi	
		Allowable shear stress; webs	Fv =	3.05 ksi	
		Electic buckling stress	F a =	4.00 1	
			re =	1.22 KSI	
weighted average allowable	e compres	sive stress (per Section E.3.1)	<i>⊢</i> ao =	6.12 KSI	
Mmax	99.12	lb-ft			
Stress	0.38	ksi			
Fb	11.01 ksi			3.42%	

Work Prepared For:	Timan Window Treatments, Inc				
Project:	250270 - Conti				
Detail/Member:	Louver Beam				
-					
	ALUMINUM DESIGN	MANUAL (2020 EDITION)			
	Specifications for Alum	inum Structures (Buildings	5)		
	Allowable	Stress Design			
Design Check of 5.75"x14	1.125"x0.125"/0.125" 6005A-T6 Alumin	<u>um Tube</u>			
Per 2020 Aluminum Design	Manual				
		Critically			
Alloy:	6005A Temper:	T6 Welded:	N		
MEMBER PROPERTIES		Flongs width	h -		
5 3/4"		Flange width	D =	5.75U 0.125"	
		Flange uncontess	10 = b =	0.120	
		Web thickness	11 = th =	0.125	
	Moment of inertia abo	web thickness	111 = 1x =	0.125 80.77 in/4	
	Moment of inertia a	hout axis parallel to web	$i_{X} =$	17 /2 in/4	
	Section mod		iy = Svc =	8 04 in^3	
198	Section	modulus tension v-avie	SXC =	15 22 in/2	
÷ 3/4*	Section	modulus tension v avis	Sxi =	10.00 111'3	
	Section mad	ulus compression y avia	Syt =	4.34 1013	
3/4*	Badius of avertion about control	al axis parallel to flongo	Syc =	10.03 In 3	
			rx =	4.36 IN	
4 1/6	Radius of gyration about centre	Juai axis parailel to web	ry =	2.02 IN	
			J =	1.90 In/4	
	Cross s	ectional area of member	A =	4.25 in/2	
		Plastic section modulus	Z =	16.60 in/3	
		vvarping constant	Cw =	5.75 in/6	
MEMBER SPANS	Linguage ted member is	ngth (hotwoon ournorto)	1 -	47.07.8	
	Unsupported member le	ngin (between supports)	L =	17.07 11	
	indiaced length for bending (between bia	Effective length fector	LD =	17.07 11	
		Effective length factor	κ =	1.0	
MATERIAL PROPERTIES		Consile ultimate strength	E t., -	20 koj	
			Fiu =	JO KSI	
	Co	more vield strength	Fly =	JO KSI	
	00	Shoar ultimate strength	Fcy =	JO KSI	
		Shear viold strength	Fsu =	23 KSI	
	Comprose	shear yield strength	rsy =	21 KSI 10 100 kaj	
	Compress	ave modulus of elasticity	E =	10,100 KSI	
BOOKLING CONSTANTS	Compression in columns &	heam flanges (Intercent)	Bo -	30 37 kai	
	Compression in columns	& heam flanges (Slope)		0.25 koi	
		a sourn nanges (orope)		0.20 KSI	
		n in flat nlates (Intercent)	00 - Po -	15 00 kai	
	Compression	sion in flat nlates (Slope)	<i>Бр =</i> Dn =	40.00 KSI	
	Compression in	flat nlates (Intersection)	Dp =	0.30 KSI	
	Compressive bending stress in solid roa	tangular hare (Intercent)	Cp = Bhr =	66 82 Kai	
	Compressive bending stress in solid red	rectangular bars (Intercept)	DUI -	00.02 KSI	
	Compressive benuing sitess if solid Shear street	i flat nlates (Intercent)		0.07 KSI	
	Shear stress	ess in flat plates (Plana)	DS =	21.24 KSI	
	Shear stress in	flat nlates (Intersection)	DS =	0.14 KSI 78 05 kci	
L Iltimate etrop	oncar sitess in compression at he coefficient of flat plates in compression	nai plaies (inielseuliun)	$5 = \frac{1}{2}$	10.90 KSI	
Unimate strendth acc	gui coemoleni of flat plates in compression (stra	es for slanderness > 12)	KIC =	0.35	
Onimate strength coe	Illumete strength of flot plotos in bondi	as ior sienderness limit 12)	$K_{2C} =$	2.21	
1 1141-000	onimate strength of flat plates in bonding (atra	se for elenderness IIIIII AZ	KID =	0.50	
Ultima	ate strength of hat plates in behund (Stre	Tension coefficient	K∠D =	2.04	
			κι =	1.0	
D 2 Axial Tension					
Tensile Yielding - Unwelder	d Members	[Etv]	Etv n =	35 00 kei	
		[ריץ]	- uy_ii -	1 65 1 65	
			52 = Etv n/O =	1.00 21.21 kei	
Tensile Rupture - Unwelder	d Members	[Etu/kt]	Ftu n =	38 00 kei	
			· [u_]] =	1 92	
			52 -	10 10 10	
1			r.u_1/1/1/t =	19.49 KSI	

AM STRUCTURES 1153 Town Center Drive #201 Jupiter, FL 33458 PH: 561-951-0099

AXIAL COMPRESSION MEMBERS				
E.2 Compression Member Buckling	l ower slenderness limit	λ1 =	17 76	
vical, gross section subject to buckling	Upper slenderness limit	$\lambda 2 =$	65.67	
	Slenderness	$\lambda(max) =$	104.73	≥λ2
	[0.85π²Ε/λ²]	Fc_n =	7.72 ksi	
		Ω =	1.65	
		Fc_n /Ω =	4.68 ksi	
E.3 Local Buckling				
For column elements in uniform compression subject	ct to local buckling, the uniform			
compressive strength is addressed in Section B.5.4	calculated below.			
B.5.4.2 - Flat elements supported on both edges (Fl B 5.4.2 - Elat elements supported on both edges (M	ange) (eb)			
D.0.4.2 - That elements supported on both edges (W				
E.4 Buckling Interaction				
Per Table B.5.1	[π²*E/ (1.6*b/tb)²]	Fe(flange) =	20.11 ksi	
-	[Fc_n]	Fc_n =	7.72 ksi	
Fe	e(liange) > FC_n (E.2 Member Buckling)	$\Omega = \frac{1}{2}$	1.65	
	[~ 2×⊑/ /1 6×h/4h\2]	$FC_{II}XI =$	4.00 KSI	
	[/1 ⁻ Ε/ (1.0 ///Π) ⁻] [0.85π²Ε/λ(max)²]^1/3 * ΓΕρ^2/3]	Fe(web) =	J. ID KSI 4 26 kei	
	Fe(web) < Fc n (E.2 Member Bucklina)	Ω =	1.65	
		 Fc_n/Ω =	2.58 ksi	
		-		
FLEXURAL MEMBERS				
F.2 Yielding and Rupture	Lingt Chata of Malding			
Nominal liexural strength for yielding and rupture		Mpp =	312 73 k_in	
	[//.0 00 / 05] [Mnp/Sx]	Fb n =	35.00 ksi	
		_Ω =	1.65	
		Fb_n /Ω =	21.21 ksi	
	Limit State of Rupture			
	[Z*Ftu/kt]	Mnu =	839.60 k-in	
	[Mnu/Z]	Fb_n =	38.00 ksi	
		$\Omega =$	1.95 10.40 ksi	
		10_1/12 -	13.43 KSI	
F.4 Lateral-Torsional Buckling				
Unsymmetric shape subject to lateral-torsional buck	ling			
Slenderness for sh	hapes any shape about the bending axis	$\lambda F.4.2.5 =$	45.48	< 0.5
Nominal flexural strength - lateral-torsional buckling	Maximum siendemess	A(max) -	45.46	
	[Mnp(1-(λ/Cc))+(π²*E*λ*Sx/Cc^3)]	Mnmb =	239.17 k-in	
	[Mnmb/Sx]	Fb_n =	26.77 ksi	
		Ω =	1.65	
		Fb_n/Ω =	16.22 ksi	
UNIFORM COMPRESSION ELEMENTS				
B.5.4.2 Flat Elements Supported on Both Edges	- Web & Flange			
Uniform compression strength, flat elements suppor	ted on both edges			
	Lower slenderness limit	$\lambda 1 = \lambda 2 =$	20.8	
	Flance Slenderness	Λ2 = h/th =	3∠.0 44 0	> 22
	Web Slenderness	h/th =	111.0	≥ λ2
	[k2c*√(Bp*E)/(1.6*b/tb)]	Fc_n1 =	21.74 ksi	
		Ω =	1.65	
		Fc_n1/Ω =	13.17 ksi	
	[K2C [~] \(Bp*E)/(1.6*h/th)]	+c_n2 =	8.62 ksi	
		$\Omega = \frac{1}{2}$	1.00 5.22 kai	

Г

FLEXURAL COMPRESSION ELEMENTS B.5.5.1 Flat Elements Supported on Both Edges - W	/eb				
Flexural compression strength, flat elements supported	l on both edges				
	Lower slenderne	ss limit	λ1 =	33.10	
	Upper slenderne	ss limit	$\lambda 2 =$	77.22	
	Slend	erness	h/th =	111.00	≥ λ2
	[k2b*SQRT(Bbr*E)/(m	1*h/th)1	Fb n =	23.23 ksi	
			Ω =	1.65	
			Fb $n/\Omega =$	14.08 ksi	
SHEAR				11.00 Kor	
G 2 Shear Supported on Both Edges - Web					
Members with flat elements supported on both edges	l ower slenderne	ee limit	1 -	35 20	
members with hat elements supported on both edges	Lower sienderne	ss iirriit ee limit	A7 =	55.29	
	Opper sienderne Slond	ornocc	//2 =	111.00	> 12
		t11033		F 19 kai	2 1/2
	[11-E/(1.25	<i>\\\\\\\\\\\</i>	rv_11 =	0.10 KSI	
			Ω-	1.05	
			$Fv_n/\Omega =$	3.14 ksi	
	All source below the second second		-	40.001	
	Allowable bending	stress	- FD =	16.22 KSI	
	Allowable axial stress, compl	ression	Fac =	3.18 KSI	
	Allowable shear stress	; webs	Fv=	3.14 KSI	
	Electic buckling	atroac	F o -	4 CC kai	
Waighted everage ellowable as			Fe -	4.00 KSI 7.49 koj	
weighted average allowable co	impressive stress (per Section	E.3.1)	Fa0 =	7.40 KSI	
Banding Moments					
Denting Moments	nding moment developed in m	ombor	14	7 10 kin ft	
Be	Panding moment developed in m	leniber	IVIZ =	7.12 KIP-IL	
	Allowable bending stress of m	ember	10 - Eb -	9.00 KSI 16.22 koj	< 1.0
	Allowable bending stress of h	lember	FD -	10.22 KSI	< 1.0
Avial Loads					
Anal Loads	Avial load developed in m	ombor	Ev -	0 lb	
	Axial load developed in m	lember	rx -		
Allowable	Axial stress developed in n	lember	іа =	0.00 KSI	- 1 0
Allowable	compressive axial stress of fr	lember	Fac -	3. 10 KSI	< 1.0
Shear Loads					
Unear Loads	Shear load developed in m	omhor	\/z =	1 612 lb	
	Shear stress developed in m	ember	v2 -	1,012 lb	
ΔΙΙ	wable shear stress of membe	r webe	TV =	0.40 KSI 3.14 kci	< 1.0
7 404		I WODO	1 v -	J. 14 KSI	\$ 1.0
Interaction Equations					
		√ [(fb/Fl	b)^2 + (fv/Fv)^2] =	0.61	< 1.0
	Ea H.1-1	. [(fa/Fa + fb/Fb =	0.00	< 1.0
	Eq H.3-2 fa	/Fa + (fb/F	$b)^{2} + (fv/Fv)^{2} =$	0.00	< 1.0
		,			
CONFIGURATION AND MOMENT TABULATION TO	OLS				
	Suppor	rt Type	Beam =	Simple	
# of beam= 2	Beam	Length	L =	17.67 ft	
	Tributary	Width	W =	12.17 ft	
	Load on Tributary (LL, WL, D	L, etc)	RL =	30.00 psf	
Additional B	eam Load (Weight or Service	Loads)	DL =	0.00 lb/ft	
	Total Loading on	Beam	w =	365.00 lb/ft	
	Shear Loading at End of	f Beam	Vy =	3224 lbs	
	CALCULATED MO	MENT	Mmax =	14.2 kip-ft	
Deflection Check				-	
			Support =	Simple	
			Deflection Limit =	L / 180	
			w =	365.00 lb/ft	
	ALLOWABLE DEFLE	CTION	∆Allow =	1.18 in	
	MAXIMUM DEFLE	CTION	∆Max =	0.49 in	42%
		Sir	mple Max Deflectior	n = 5wl^4/384El	
		ОК	, Allowable Deflec	tion Sufficient	

AM STRUCTURES 1153 Town Center Drive #201 Jupiter, FL 33458 PH: 561-951-0099 Т

Work Prepared For:	Timan Window Treatme	ents. Inc				
Project:	250270 - Conti	,				
Detail/Member:	Main Beam					
	ALUMI	NUM DESIGN MANUAL	. (2020 EDITION)			
	Specificat	tions for Aluminum Str	uctures (Buildings)		
		Allowable Stress D	esign			
-						
Design Check of 5.75"x14	4.125"x0.125"/0.125" 600	5A-T6 Aluminum Tube				
Per 2020 Aluminum Desigr	n Manual					
			Critically			
Alloy:	6005A	Temper: T6	Welded:	N		
MEMBER PROPERTIES			Flongo width	h -		
5 3/4"		El	Flange width	D = th =	5.750	
		1.1	Web beight	10 - b -	0.125	
			Web thickness	11 = th =	0 125"	
	Momer	nt of inertia about axis pa	arallel to flange	lx =	80 77 in^4	
	Mom	ent of inertia about axis	parallel to web	$l_{V} =$	17 42 in^4	
		Section modulus com	pression x-axis	Sxc =	8 94 in^3	
5 1/8		Section modulus	tension x-axis	Sxt =	15.88 in^3	
- 3/4		Section modulus	tension y-axis	Svt =	4.34 in^3	
		Section modulus com	pression y-axis	Svc =	10.03 in^3	
3/4*	Radius of gyration	about centroidal axis pa	arallel to flange	rx =	4.36 in	
is	Radius of gyrati	on about centroidal axis	parallel to web	ry =	2.02 in	
		То	orsion constant	J =	1.90 in^4	
		Cross sectional a	rea of member	A =	4.25 in^2	
		Plastic se	ection modulus	Z =	16.60 in^3	
		Wa	arping constant	Cw =	5.75 in^6	
MEMBER SPANS						
	Unsuppor	ted member length (betw	veen supports)	L =	3.0 ft	
l	Jnbraced length for bendir	ng (between bracing aga	inst side-sway)	Lb =	3.0 ft	
		Effectiv	e length factor	<i>k</i> =	2.0	
MATERIAL PROPERTIES		Tanaila uk		=	00.1	
		I ensile ul Tanail	umate strength	Ftu =	38 KSI	
		Compressiv	e yield strength	Fty =	35 KSI	
		Shear ut	timate strength	FCy =	33 KSI 23 Ksi	
		Shea	r vield strength	Fsv =	20 KSI 21 ksi	
		Compressive modu	lus of elasticity	7 Sy = F =	21 KSI 10 100 ksi	
		Compressive mode	ius of clustiony	L -	10,100 K3	
BUCKLING CONSTANTS						
	Compression	in columns & beam flan	ges (Intercept)	Bc =	39.37 ksi	
	Compress	ion in columns & beam	langes (Slope)	Dc =	0.25 ksi	
	Compression in	columns & beam flange	s (Intersection)	Cc =	65.67 ksi	
		Compression in flat pla	ates (Intercept)	Bp =	45.00 ksi	
		Compression in flat	plates (Slope)	Dp =	0.30 ksi	
	(Compression in flat plate	s (Intersection)	Cp =	61.42 ksi	
	Compressive bending str	ess in solid rectangular l	pars (Intercept)	Bbr =	66.82 ksi	
	Compressive bending	stress in solid rectangul	ar bars (Slope)	Dbr =	0.67 ksi	
		Shear stress in flat pla	ates (Intercept)	Bs =	27.24 ksi	
		Shear stress in flat	plates (Slope)	Ds =	0.14 ksi	
	:	Shear stress in flat plate	s (Intersection)	Cs =	78.95 ksi	
Ultimate stren	gth coefficient of flat plate	s in compression (slend	erness limit λ2)	k1c =	0.35	
Ultimate strength coe	efficient of flat plates in cor	npression (stress for sle	nderness > λ2)	k2c =	2.27	
	Ultimate strength of flat	plates in bending (slend	erness limit λ2)	k1b =	0.50	
Ultima	ate strength of flat plates in	n bending (stress for sle	naerness > λ2)	k2b =	2.04	
		l'en	sion coefficient	<i>kt</i> =	1.0	
D 2 Avial Tanaian						
Tensile Vielding Unwelde	d Members		154.7		25 00 kc	
Tensile Tieluling - Unwelde			[רנץ]	rty_n =	งจ.UU KSI 1 คศ	
				12 =	ו.00 21 21 גבו	
Tensile Rupture - Unwelde	d Members		[Etu/kt]	$F_{t_1} n =$	38 00 kei	
			Li taintij	0 =	1 95	
				 Ftu n/Ωt =	19 49 ksi	
1				· ··· · · · · · · · · · · · · · · · ·		

AM STRUCTURES 1153 Town Center Drive #201 Jupiter, FL 33458 PH: 561-951-0099

AXIAL COMPRESSION MEMBERS				
Axial gross section subject to buckling	Lower slenderness limit	$\lambda 1 =$	17 76	
stial, groce coolien cabjeet to backing	Upper slenderness limit	$\lambda 2 =$	65.67	
	Slenderness	$\lambda(max) =$	35.57	< λ2
	[(Bc-Dc*λ)(0.85+0.15*((Cc-λ)/(Cc-λ1))]	Fc n =	28.92 ksi	
		_Ω =	1.65	
		Fc_n /Ω =	17.53 ksi	
E.3 Local Buckling				
For column elements in uniform compressio	n subject to local buckling, the uniform			
compressive strength is addressed in Section	on B.5.4 calculated below.			
B.5.4.2 - Flat elements supported on both e	dges (Flange)			
B.5.4.2 - Flat elements supported on both e	dges (Web)			
E.4 Buckling Interaction				
Per Table B.5.1	[π²*E/ (1.6*b/tb)²]	Fe(flange) =	20.11 ksi	
	[0.85π²Ε/λ(max)²]^1/3 * [Fe^2/3]	Fc_n =	30.03 ksi	
	Fe(flange) < Fc_n (E.2 Member Buckling)	Ω =	1.65	
		Fc_n /Ω =	18.20 ksi	
	[π²*E/ (1.6*h/th)²]	Fe(web) =	3.16 ksi	
	[0.85π²E/λ(max)²]^1/3 * [Fe^2/3]	Fc_n =	8.75 ksi	
	Fe(web) < Fc_n (E.2 Member Buckling)	Ω =	1.65	
		Fc_n /Ω =	5.30 ksi	
FLEXURAL MEMBERS				
F.2 Yielding and Rupture				
Nominal flexural strength for yielding and ru	pture Limit State of Yielding			
	[1.5*Sc*Fcy]	Mnp =	312.73 k-in	
	[Mnp/Sx]	Fb_n =	35.00 ksi	
		Ω =	1.65	
		Fb_n/Ω =	21.21 ksi	
	Limit State of Rupture			
	[Z*Ftu/kt]	Mnu =	839.60 k-in	
	[Mnu/2]	Fb_n =	38.00 KSI	
		$\Omega =$	1.95 10.40 kai	
		FD_11/32 -	19.49 KSI	
F.4 Lateral-Torsional Buckling				
Unsymmetric shape subject to lateral-torsion	nal buckling		07.40	
Sienderne		$\Lambda F.4.2.3 = \lambda(max) =$	27.49	
Nominal flexural strength - lateral-torsional b	buckling	N(IIIax) -	27.45	× 00
	_ [Mnp(1-(λ/Cc))+(π²*E*λ*Sx/Cc^3)]	Mnmb =	268.27 k-in	
	[Mnmb/Sx]	Fb n =	30.02 ksi	
		_Ω =	1.65	
		Fb_n /Ω =	18.20 ksi	
UNIFORM COMPRESSION ELEMENTS				
B.5.4.2 Flat Elements Supported on Both	Edges - Web & Flange			
Uniform compression strength, flat elements	supported on both edges			
	Lower slenderness limit	$\lambda 1 =$	20.8	
		$\Lambda 2 =$	32.8	~ 10
	Flange Slenderness	D/ID =	44.0	2 VZ
	Web Sienderness [k2c*√/Rc*F)//1 6*6/4611	Fc n1 =	111.U 21.74 kei	<i>≃</i> ∧∠
		, <u>, , , , -</u> 0 =	1 65	
		Fc n1/ Ω =	13.17 ksi	
	[k2c*√(Bp*E)/(1.6*h/th)]	Fc n2 =	8.62 ksi	
		Ω =	1.65	
		Fc_n2/Ω =	5.22 ksi	

FLEXURAL COMPRESSION ELEMENTS	6			
B.5.5.1 Flat Elements Supported on Bo	th Edges - Web			
Flexural compression strength, flat eleme	nts supported on both edges			
	Lower slenderness limit	λ1 =	33.10	
	Upper slenderness limit	λ2 =	77.22	
	Slenderness	h/th =	111.00	≥ λ2
	[k2b*SQRT(Bbr*E)/(m*h/th)]	Fb n=	23.23 ksi	
		_Ω =	1.65	
		Fb n/ Ω =	14.08 ksi	
SHEAR				
G.2 Shear Supported on Both Edges - V	Neb			
Members with flat elements supported on	both edges Lower slenderness limit	$\lambda 1 =$	35.29	
	Upper slenderness limit	λ2 =	63 16	
	Slenderness	h/th =	111.00	> \2
	$[\pi^{2}F/(1 \ 25^{*}h/th)^{2}]$	Ev n =	5 18 ksi	- / 2
		0 =	1 65	
		$Fv n/\Omega =$	3 1/ kei	
		1 v_1/1/1/ =	5. 14 KSI	
ALLOWABLE STRESSES				
		-	40.00 1-1	
	Allowable bending stress	+b =	18.20 ksi	
	Allowable axial stress, compression	Fac =	7.48 KSI	
	Allowable snear stress; webs	FV =	3.14 KSI	
	Elastia huskling starts	F -	10 10 1-2	
	Elastic buckling stress	Fe =	40.40 KSI	
weighted average	allowable compressive stress (per Section E.3.1)	Fao =	7.48 KSI	
MEMBER LUADING				
Bending Moments	Banding memort developed in member	M= -	4.04 1.00	
	Bending moment developed in member	IVIZ =	4.84 KIP-IL	
	Allowable bending stress of member	10 - Eb -	0.50 KSI 19.20 koj	< 1.0
	Allowable bending siless of member	FD -	10.20 KSI	< 1.0
Axial Loads				
Axia Eddas	Axial load developed in member	Ev =	0 lb	
	Axial stress developed in member	7 x = fa =	0.00 ksi	
	Allowable compressive axial stress of member	Fac =	7 48 ksi	< 1.0
		1 40		1.0
Shear Loads				
<u></u>	Shear load developed in member	V7 =	1 612 lb	
	Shear stress developed in member	fv =	0.46 ksi	
	Allowable shear stress of member webs	Fv =	3.14 ksi	< 1.0
Interaction Equations				
	√ [(fb/	Fb)^2 + (fv/Fv)^2] =	0.39	< 1.0
	Eq H.1-1	fa/Fa + fb/Fb =	0.00	< 1.0
	Eq H.3-2 fa/Fa + (fb/	/Fb)^2 + (fv/Fv)^2 =	0.00	< 1.0
	·			
CONFIGURATION AND MOMENT TABL	ILATION TOOLS			
# of beam= 1	Support Type	Beam =	Cantilever	
# P load= 1	Beam Length	L =	3.00 ft	
a= 3.00 ft	Tributary Width	W =	0.00 ft	
		P Load=	1612.1 lb	
	Load on Tributary (LL, WL, DL, etc)	RL =	0.00 psf	
	Additional Beam Load (Weight or Service Loads)	DL =	0.00 lb/ft	
	Total Loading on Beam	w =	0.00 lb/ft	
	Shear Loading at End of Beam	Vy =	1612 lbs	
	CALCULATED MOMENT	Mmax =	4.84 kip-ft	
Deflection Check				
<u>Beneetion oncek</u>		Support =	Cantilever	
		Deflection I imit =	L / 180	
		_ = = = = = = = = = = = = = = = = = = =	0.00 lb/ft	
	ALLOWABLE DEFLECTION	∆Δllow =	0 40 in	
	MAXIMUM DEFLECTION	∆Max =	0.03 in	8%
			0.00 11	
		K. Allowable Deflec	tion Sufficient	

AM STRUCTURES 1153 Town Center Drive #201 Jupiter, FL 33458 PH: 561-951-0099

Work Prepared For:	Timan Window Treatments,	Inc				
Project:	250270 - Conti					
Detail/Member:	Post Design					
ſ	ALUMINUI	M DESIGN MANUAL (2	2020 EDITION)			
	Specification	s for Aluminum Struc	tures (Building	s)		
	•	Allowable Stress Des	sign			
Design Check of 6.5"x6.5"x0.125"/	125" 6063-T6 Aluminum Tu	ibe				
Per 2020 Aluminum Design Manual			Critically			
Allov:	6063 Te	mper: T6	Welded:	N		
MEMBER PROPERTIES						
6 1/2"		-	Flange width	b =	6.500"	
1	2	Flan	ige thickness	tb =	0.125"	
		10/	web neight	n = th =	6.500 ^{°°}	
	Momento	vv finertia about avis nar	allel to flance	un = 1x =	0.125 40.50 in^4	
	Momen	t of inertia about axis part	arallel to web	1x = 1v =	40.50 in 4	
	Monen	Section modulus abo	out the x-axis	Sx =	12.46 in^3	
3112	Radius of gyration at	pout centroidal axis para	allel to flange	rx =	2.33 in	
	Radius of gyration	about centroidal axis p	arallel to web	ry =	2.33 in	
		Tors	sion constant	<i>J</i> =	32.39 in^4	
		Cross sectional are	a of member	A =	7.44 in^2	
		Plastic sec	tion modulus	Z =	6.05 in^3	
MEMBER SDANS						
MEMBER SPANS	Unsupported	member length (betwe	en sunnorts)	/ =	85 ft	
Unbrad	d length for bending (betwee	n bracing against side-	swav X-Axis)	Lbx =	8.5 ft	
Unbrad	d length for bending (betwee	n bracing against side-	sway Y-Axis)	Lby =	8.5 ft	
	• • • •	Effective	length factor	kx =	2.0	
				ky =	1.0	
MATERIAL PROPERTIES						
		Tensile ultin	nate strength	Ftu =	30 ksi	
			yield strength	Fty =	25 ksi	
		Compressive y	peto strength	Fcy =	25 KSI 19 koj	
		Shear	vield strength	Fsv =	15 ksi	
		Compressive modulu	s of elasticity	E =	10.100 ksi	
					-,	
BUCKLING CONSTANTS						
	Compression in	columns & beam flange	es (Intercept)	Bc =	27.64 ksi	
	Compression	in columns & beam fla	nges (Slope)	Dc =	0.14 ksi	
	Compression in coi	umns & beam flanges ((Intersection)	CC =	78.38 KSI 21.20 koj	
	Ĺ	Compression in flat plate	lates (Slope)	вр = Dn =	01.39 KSI 017 kei	
	Con	npression in flat plates	(Intersection)	Ср = Ср =	73.55 ksi	
	Compressive bending stress	in solid rectangular ba	rs (Intercept)	Bbr =	46.12 ksi	
	Compressive bending str	ess in solid rectangular	bars (Slope)	Dbr =	0.38 ksi	
		Shear stress in flat plate	es (Intercept)	Bs =	18.98 ksi	
		Shear stress in flat p	lates (Slope)	Ds =	0.08 ksi	
	She	ear stress in flat plates	(Intersection)	Cs =	94.57 ksi	
Ultimate stre	gin coefficient of flat plates in	compression (slender	ness limit λ2)	k1c =	0.35	
	Illtimate strength of flat plat	tes in bending (slendor	$\frac{1}{10000000000000000000000000000000000$	K∠C = k1h -	2.27	
Liltir	ate strength of flat nlates in h	ending (stress for slend	lerness > $\lambda 2$	k2b =	0.50 2 04	
		Tensi	on coefficient	kt =	1.0	
D.2 Axial Tension						
Tensile Yielding - Unwelded Member			[Fty]	Fty_n =	25.00 ksi	
				Ω =	1.65	
Topollo Dupturo - Unwelded Merchan			154.4.47	$Fty_n(\Omega) =$	15.15 ksi	
rensile Ruplure - Unwelded Member			[Htu/Kt]	$Ftu_n = 0 = 0$	30.00 KSI 1 05	
				Ftu n/ Ω t =	15.38 ksi	

Г

AXIAL COMPRESSION MEMBERS				
E.2 Compression Member Buckling	Lower slenderness limit	λ1 =	10.00	
wai, gross section subject to buoking	Upper slenderness limit	$\lambda 2 =$	78.38	
	Slenderness	λ(max) =	87.46	≥λ2
	[0.85π²Ε/λ²]	Fc n =	11.08 ksi	
		_Ω =	1.65	
		Fc_n/Ω =	6.71 ksi	
.3 Local Buckling				
or column elements in uniform compression subject to lo	cal buckling, the uniform compressive			
strength is addressed in Section B.5.4 calculated below.				
3.5.4.2 - Flat elements supported on both edges (Flange)				
5.5.4.2 - Flat elements supported on both edges (Web)				
E.4 Buckling Interaction				
'er Table B.5.1	$[\pi^{2*}E/(1.6*b/tb)^2]$	Fe(flange) =	15.58 ksi	
	[rc_1] Eo(flango) > Eo. n (E 2 Mombor Buckling)		1 1.08 KSI 1 65	
	re(mange) > ro_n (E.2 Weinber Duckling)	$F_{c} n/\Omega =$	1.00 6 71 ksi	
	[π²*E/ (1.6*h/th)²]	Fe(web) =	15.58 ksi	
	[Fc_n]	Fc n =	11.08 ksi	
	Fe(web) > Fc_n (E.2 Member Buckling)	_Ω =	1.65	
		Fc_n/Ω =	6.71 ksi	
F.2 Yielding and Rupture				
Nominal flexural strength for yielding and rupture	Limit State of Yielding			
	[Z*Fcy]	Mnp =	151.29 k-in	
	[Mnp/Z]	Fb_n =	25.00 ksi	
		Ω =	1.65	
	Limit State of Dupture	Fb_n/Ω =	15.15 KSI	
		Mpu =	181 55 k-in	
	[2 T ta/k] [Mnu/7]	Fb n =	30.00 ksi	
	[Ω =	1.95	
		Fb_n /Ω =	15.38 ksi	
F.4 Lateral-Torsional Buckling				
Square or rectangular tubes subject to lateral-torsional bu	ckling			
Slenderness	for shapes symmetric about the bending axis	λ F.4.2.1 =	14.04	
	Slenderness for closed shapes	λ F.4.2.3 =	13.63	
	Sienderness for any shape	h = 1.4.2.5 =	14.04	
Nominal flexural strength - lateral-torsional buckling	Maximum sienderness	$\Lambda(max) =$	14.04	< Cc
	[Mnp(1-(λ/Cc))+(π²*E*λ*Sx/Cc^3)]	Mnmb =	160.41 k-in	
	[Mnmb/Sx]	Fb_n =	12.87 ksi	
		Ω =	1.65	
		Fb_n /Ω =	7.80 ksi	
JNIFORM COMPRESSION ELEMENTS				
B.5.4.2 Flat Elements Supported on Both Edges - Web	& Flange			
Uniform compression strength, flat elements supported or	n both edges			
	Lower slenderness limit	$\lambda 1 =$	22.8	
	Upper sienderness limit	A2 =	39.2	> 10
	Hange Sienderness	D/TD =	50.0	≥ \2
	[k2c*√(Bp*E)/(1.6*b/tb)]	Fc n1 =	15 98 ksi	2 NZ
		Ω =	1.65	
		Fc_n1/Ω =	9.68 ksi	
	[k2c*√(Bp*E)/(1.6*h/th)]	 Fc_n2 =	15.98 ksi	
	, . , . , .	- Ω =	1.65	
		Fc_n2/Ω =	9.68 ksi	

FLEXURAL C	OMPRESSION ELEMENT	rs oth Edges - Web				
Flexural comp	ression strength, flat elem	ents supported on both edges				
	3 ,		Lower slenderness limi	t λ1 =	34.73	
			Upper slenderness limi	t λ2 =	92.95	
			Slenderness	s h/th =	50.00	λ1 - λ2
			[Bbr-m*Dbr*h/th]	Fb_n =	33.71 ksi	
				Ω =	1.65	
				Fb_n/Ω =	20.43 ksi	
SHEAR	nnorted on Both Edges	Web				
G.2 Snear Su	flat alamanta aunnartad a	vveb	l awar alandarnaaa limi		20 72	
Members with	nat elements supported of	n bour edges	Lower sienderness limi	L // -	30.73	
			Slenderness	h/th =	75.05	11 12
			IRs-1 25Ds*h/th1	Fv n =	13.84 ksi	AT - AZ
			[20 1.2020 1.41]	0 =	1 65	
				Fv_n /Ω =	8.39 ksi	
ALLOWABLE	STRESSES					
		A	llowable bending stress	s Fb =	6.54 ksi	
		Allowable ax	cial stress, compression	n Fac =	6.71 ksi	
		Allowa	able shear stress; webs	Fv =	8.39 ksi	
		Allowat	ole axial stress, Tensior	n Fat =	15.15 ksi	
		L	Elastic buckling stress	Fe =	6.68 ksi	
	Weig	hted average allowable compressive str	ess (per Section E.3.1)	Fao =	9.68 ksi	
MEMBER LO	ADING					
benuing won	nents	Bending momen	t developed in member	M7 =	1 98 kin-ft	
		Bending stress	s developed in member	fb =	1.90 kip-it 1.90 ksi	
		Allowable ber	nding stress of member	· Fb =	6.54 ksi	< 1.0
			5			
Compression	Loads					
		Compression load	d developed in member	P =	2,010 lb	
		Compression stress	s developed in member	fc =	0.27 ksi	
Tonsion Logo	łe	Allowable compressive	axial stress of member	- Fac =	6.71 ksi	< 1.0
Tension Load	15	Tension load	d developed in member	- T=	201 lb	
		Tension stress	s developed in member	ft =	0.02 ksi	
		Allowable Tension	axial stress of member	Fat =	15.15 ksi	< 1.0
Shear Loads		Chaselas			070 #	
		Shear atrace	a developed in member	vz =	370 ID 0.24 koj	
		Allowable shear	stress of member webs	5 Fv =	8.39 ksi	< 1.0
					0.00 1.01	
Interaction E	quations					
			√ [(fb/Fb)^2 + (fv/Fv)^2] =	0.29	< 1.0
			c /=	ta/Fa + tb/Fb =	0.33	< 1.0
			ta/⊦a +	(tb/Fb)^2 + (tv/Fv)^2 =	0.33	< 1.0
	TION AND MOMENT TAB	ULATION TOOLS				
My =	23.73 kin-in Apr	plied Moment Per Member	30 DGE	Total Gravity Load		
Mv =	1.08 kip-in Apr	blied moment Per Member	8 8 FT	Post Trib Area in X-Avis		
Tn =	0.12 kip-in Apr	blied Torsion Per Member	7.6 FT	Post Trib Area in Y-Avis		
/y =	275 lbs Δpr	blied Shear Load Per Member	3 PSF	Unlift		
Vv =	248 lbs An	blied Shear Load Per Member	18 PSF	Lateral Load		
V =	370 lbs Apr	blied Resultant Shear Load Per Member				
P =	2,010 lbs Apr	blied axial compression load				
T =	201 lbs App	blied axial tension load	1.37 kip-in	Seismic Moment		
i						

Work Prepared For: Timan Window Treatments, Inc

	Project:	250270 - Conti						
N	lember/Detail:	Beam To Beam						
Steel Spaced T	hread Tappii	ng Screw to Aluminum Connections						
+2020 Aluminum	2020 Aluminum Design Manual, *AMMA TIR-A9-2014							
Anchor:	1/4-14 SMS, 31	6 SS, Steel Screw						
Size:	1/4-14 SMS	Nominal Anchor Size Designation						
Alloy:	316 SS	Screw Material						
Ftu=	100 ksi	Anchor Ultimate Tensile Strength						
Fy =	65 ksi	Anchor Yield Strength						
D =	0.250''	Nominal Screw Diameter (*Table 20.1,20.2)						
Dmin =	0.185''	Basic Minor Diameter (*Table 20.1,20.2)						
As =	0.027 in ²	Tensile Stress Area (*Table 20.1,20.2)						
Ar =	0.027 in ²	Thread Root Area (*Table 20.1,20.2)						
n =	14	Thread Per Inch						
Dw=	0.625''	Washer Diameter Consider Washer?						
Dws =	0.500''	Anchor Head Diameter						
Dh =	0.250''	Nominal Hole Diameter						
Screw Boss?	No	Is anchor placed in a screw boss/chase/slot?						
Countersunk?	No	Yes or No?						
CS Depth =		Countersink depth						
de =	0.500''	Aluminum Edge Distance						
Member in Conta	ct with Screw H	ead:						
Alloy 1:	6063-T6							
t1 =	0.125''	Thickness of Member 1						
Ftu1 =	30 ksi	Tensile Ultimate Strength of Member 1						
Fty1 =	25 ksi	Tensile Yield Strength of Member 1						
Member not in Co	ontact with Scre	w Head:						
Alloy 2:	6063-T6							
t2 =	0.125''	Thickness of Member 2						
Le =	0.125''	Depth of Full Thread Engagement Into t2 (Not Including Tapping/Drilling Point)						
Ftu2 =	30 ksi	Tensile Ultimate Strength of Member 2						
Fty2 =	25 ksi	Tensile Yield Strength of Member 2						
t3 =	0.125''	Screw Boss Wall Thickness						
Le1 =	0.500''	Minimum Depth of Full Thread Engagement Into Screw Boss If						
		Applicable (Not Including Tapping/Drilling Point)						

Allowable Tensic	<u>on</u>								
C=	1.0	Coeff. Dependent On Screw Location (+Sect. J.5.4.2)							
Ks=	1.2	Coeff. Dependent On Member 2 Thickness (†Sect. J.5.4.1.1b)							
Rn t1 =	937.5 lb	Nominal Pull-Out Strength Of Screw (†Sect. J.5.4.1.1b)							
	937.5 lb	Nominal Pull-Over Strength Of Screw (†Sect. J.5.4.2)							
	N/A	Nominal Pull-Out Strength From Screw Boss (if applicable) (†Sect. J.5.4.1.2)							
Pnt =	, 896.0 lb	owable Tensile Capacity Of Screw (*Eqn. 10.4-10.7)							
Ω =	3.0	ety Factor For Connections; Building Type Structures							
Ω =	3.0	Safety Factor For Anchor							
	Allowable	e Tension = 313 lb							
	I								
Allowable Shear:	<u>.</u>								
Rn_v1 =	1875.0 lb	Bearing On Member 1 (†Sect. J.5.5.1)							
Rn_v2 =	1875.0 lb	Bearing On Member 2 (†Sect. J.5.5.1)							
Rn_v3 =	2784.2 lb	Screw Tilting (†Sect. J.5.5.2)							
Rn_v4 =	N/A	Shear Capacity Of Screw Boss Wall							
Pnv =	517.3 lb	Allowable Shear Capacity Of Screw (*Eqn. 7.5)							
Ω =	3.0	3.0 Safety Factor For Connections; Building Type Structures							
Ω =	Ω = 3.0 Safety Factor For Anchor								
	Allowable Shear = 517 lb								
Alternate Option	<u>IS:</u>								
	Disregard the li	miting allowable capacities from Member 1 (member in contact with							
	Screw nead)	miting allowable capacities from Member 2 (member in NOT in contact							
	Disregaru trie il	a)							
	with screw nea	u)							
Concentrated Sh	ear & Tensile Re	eactions (Select this connection type)							
Qty	6	Anchor Qty at Connection							
Treq	0 lb	Required Tensile Loading on Connection							
Vreq	1612 lb	Required Shear Loading on Connection							
п	1.00	Exponent factor							
Тсар	1875 lb	Tensile capacity of connection (Qty * Rz)							
Vcap	3104 lb	Shear capacity of connection (Qty * Rx)							
-									
$\frac{R_Z}{T}$ +	$\frac{R_X}{W} =$	0.52							
T_{CAP}	V _{CAP}								
		OK, (6) anchors sufficient							

Work Prepared For: Timan Window Treatments, Inc				
	Project:	250270 - Conti		
N	/lember/Detail:	CLIP TO POST CONNECTION		
Steel Spaced T	hread Tappi	ng Screw to Aluminum Connections		
+2020 Aluminum	Design Manual	*AMMA TIR-A9-2014		
	0			
Anchor:	1/4-14 SMS, 31	6 SS, Steel Screw		
Size:	1/4-14 SMS	Nominal Anchor Size Designation		
Alloy:	316 SS	Screw Material		
Ftu=	100 ksi	Anchor Ultimate Tensile Strength		
Fy =	65 ksi	Anchor Yield Strength		
D =	0.250''	Nominal Screw Diameter (*Table 20.1,20.2)		
Dmin =	0.185''	Basic Minor Diameter (*Table 20.1,20.2)		
As =	0.027 in ²	Tensile Stress Area (*Table 20.1,20.2)		
Ar =	0.027 in ²	Thread Root Area (*Table 20.1,20.2)		
n =	14	Thread Per Inch		
Dw=	0.625''	Washer Diameter Consider Washer?		
Dws =	0.500''	Anchor Head Diameter		
Dh =	0.250''	Nominal Hole Diameter		
Screw Boss?	No	Is anchor placed in a screw boss/chase/slot?		
Countersunk?	No	Yes or No?		
CS Depth =		Countersink depth		
de =	0.500''	Aluminum Edge Distance		
Member in Conta	ct with Screw H	ead:		
Alloy 1:	6063-T6			
t1 =	0.125''	Thickness of Member 1		
Ftu1 =	30 ksi	Tensile Ultimate Strength of Member 1		
Fty1 =	25 ksi	Tensile Yield Strength of Member 1		
Member not in Co	ontact with Scre	w Head:		
Alloy 2:	6063-T6			
t2 =	0.125''	Thickness of Member 2		
Le =	0.125''	Depth of Full Thread Engagement Into t2 (Not Including Tapping/Drilling Point)		
Ftu2 =	30 ksi	Tensile Ultimate Strength of Member 2		
Fty2 =	25 ksi	Tensile Yield Strength of Member 2		
t3 =	0.125''	Screw Boss Wall Thickness		
Le1 =	0.500''	Minimum Depth of Full Thread Engagement Into Screw Boss If		
		Applicable (Not Including Tapping/Drilling Point)		

Allowable Tensic	<u>on</u>								
C=	1.0	Coeff. Dependent On Screw Location (†Sect. J.5.4.2)							
Ks=	1.2	Coeff. Dependent On Member 2 Thickness (†Sect. J.5.4.1.1b)							
Rn t1 =	937.5 lb	Nominal Pull-Out Strength Of Screw (†Sect. J.5.4.1.1b)							
	937.5 lb	Nominal Pull-Over Strength Of Screw (†Sect. J.5.4.2)							
	N/A	Nominal Pull-Out Strength From Screw Boss (if applicable) (†Sect. J.5.4.1.2)							
Pnt =	, 896.0 lb	owable Tensile Capacity Of Screw (*Eqn. 10.4-10.7)							
Ω =	3.0	ety Factor For Connections; Building Type Structures							
Ω =	3.0	Safety Factor For Anchor							
	Allowabl	e Tension = 313 lb							
Allowable Shear:	<u>.</u>								
Rn_v1 =	1875.0 lb	Bearing On Member 1 (†Sect. J.5.5.1)							
Rn_v2 =	1875.0 lb	Bearing On Member 2 (†Sect. J.5.5.1)							
Rn_v3 =	2784.2 lb	Screw Tilting (†Sect. J.5.5.2)							
Rn_v4 =	N/A	Shear Capacity Of Screw Boss Wall							
Pnv =	517.3 lb	Allowable Shear Capacity Of Screw (*Eqn. 7.5)							
Ω =	3.0	Safety Factor For Connections; Building Type Structures							
Ω =	= 3.0 Safety Factor For Anchor								
	Allowable Shear = 517 lb								
Alternate Option	<u>IS:</u>								
	Disregard the li	miting allowable capacities from Member 1 (member in contact with							
	screw head)								
	Disregard the li	miting allowable capacities from Member 2 (member in NOT in contact							
	with screw hea	d)							
Concontrated Sh	oor & Tonsilo P	actions (Select this connection type)							
Otv		Anchor Oty at Connection							
Trea	0 lb	Required Tensile Loading on Connection							
Vrog	270 lb	Required Shoar Loading on Connection							
vieg	370 ID 1 00	Evenent factor							
"	1.00	Exponent factor							
Тсар	1875 lb	Tensile capacity of connection (Qty * Rz)							
Vcap	3104 lb	Shear capacity of connection (Qty * Rx)							
$\frac{R_z}{1}$ +	$-\frac{R_{\chi}}{R_{\chi}} =$	0.12							
T_{CAP}	V_{CAP}								
		OK, (6) anchors sufficient							

Г

or: Timan Window Treatments, Inc					
<mark>ct:</mark> Conti					
Base Connection Thru Bolt	Base Connection Thru Bolt				
ULATION					
Max Allowable Moment for Anchor Connection	[lb-ft]				
Max Allowable Shear for Anchor Connection	[lb]				
Anchor Row Spacing	[in]				
Anchor Column Spacing	[in]				
8					
Tensile Reaction on member being anchored	[lb]				
Shear Reaction on member being anchored	[lb]				
Ø	[in]				
Tensile allowable capacity of anchor	[lb]				
Shear allowable capacity of anchor	[lb]				
= 0.34633					
OK, 8.6" O.C. spacing is valid					
	 Timan Window Treatments, Inc Conti Base Connection Thru Bolt ULATION Max Allowable Moment for Anchor Connection Max Allowable Shear for Anchor Connection Anchor Row Spacing Anchor Column Spacing Tensile Reaction on member being anchored Shear Reaction on member being anchored So Tensile Reaction on member being anchored Shear Reaction on member being anchored So Ø Tensile allowable capacity of anchor Shear allowable capacity of anchor So 0.34633 OK, 8.6" O.C. spacing is valid				

www.icc-es.org | (800) 423-6587 | (562) 699-0543

ICC-ES Evaluation Report

ESR-4226

DIVISION: 31 00 00—EARTHWORK Section: 31 63 00—Bored Piles

REPORT HOLDER:

AMERICAN GROUND SCREW, INC.

EVALUATION SUBJECT:

GROUND SCREW SYSTEMS

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2018 and 2015 International Building Code[®] (IBC)
- 2018 and 2015 International Residential Code[®] (IRC)

Properties evaluated:

- Structural
- Geotechnical

2.0 USES

The Ground Screw Systems are used to transfer axial compression, axial tension and lateral loads from the supported structures to the surrounding soil. When the Ground Screw Systems are installed under the IRC, an engineered design is required in accordance with IRC R301.1.3.

3.0 DESCRIPTION

3.1 General:

The Ground Screw Systems consist of a steel screw shaft with helical-shaped screw threads; the screw shafts are screwed into the ground by application of torsion and simultaneously-applied downward pressure until the desired depth is reached. The ground screws come in two configurations depending on the top connection device; a ground screw with a welded flange as described in Section 3.2.2.2 of this report and the Model 3 ground screw which uses flange inserts described in Section 3.2.2.3 of this report.

3.2 System Components:

3.2.1 Screw Shafts: The screw shafts are composed of a central tubular shaft with factory welded steel screw

A Subsidiary of the International Code Council®

Reissued March 2022

This report is subject to renewal March 2024.

threads. The screw shafts come in 3 and 4.5-inch (76 and 114 mm) outside diameter and 63, 70.9 and 78.7 inches (1600, 1800 and 2000 mm) lengths. The screw shaft diameter tapers to a pointed tip at the bottom of the screw shaft. The top of the screw shafts on the welded flange configuration and the three welded nuts on the Model 3 ground screws are used to connect the driver head for ground screw installation. The Model 3 ground screws come with factory welded steel nuts that are used to connect to the flange inserts described in Section 3.2.2.3 of this report. See Figure 3 for typical ground screws configurations. The screw shafts are made from round tubular steel having a minimum wall thickness of 0.148-inch (3.75 mm). The steel screw threads have a minimum thickness of 0.079-inch (2 mm). The screw shafts are hot-dipped galvanized in accordance with ASTM A123.

3.2.2 Top Connection Devices:

3.2.2.1 General: The top connection devices come in different flange configurations, such as welded flange and flange inserts. The welded flange is factory welded to the top of the ground screws. The flange inserts are composed of factory welded steel tube and flange plate that is inserted into the top of the ground screw shaft and connected using three friction bolts as described in Section 3.2.2.4 of this report. See Figures 1 and 2 for typical configurations.

3.2.2.2 Welded Flanges: The welded flanges are available in the configurations described in Table 1B of this report. The welded flanges also come with predrilled holes, which are used to connect to the supported structural element. The welded flanges are hot-dipped galvanized in accordance with ASTM A123. See Table 1B for welded flanges dimensions and configurations.

3.2.2.3 Flange Inserts: The flange inserts consist of a steel round sleeve (collar) factory welded to a flange plate or steel channel. The flange plate or steel channel come with predrilled holes. The connection between the flange insert and the ground screw is made by the use of three friction bolts complying with Section 3.2.2.4 of this report. The flange inserts are hot-dipped galvanized in accordance with ASTM A123. See Table 1A for flange insert dimensions and configurations.

3.2.2.4 Friction Bolts: The friction bolts used to connect the flange collar to the screw shaft must be 0.63-inch-diameter by 1.18-inch-long (16 x 30 mm) hex head bolts

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

complying with DIN 933, Property Class 4.8. The friction bolts must be hot-dipped galvanized in accordance with ASTM A153.

3.3 Material Specifications:

3.3.1 Screw Shafts and Screw Threads: The screw shafts and screw threads comply with GB/T 700 Q235B carbon steel specification having a minimum yield strength of 36 ksi (248 MPa) and a minimum ultimate tensile strength of 58 ksi (400 MPa). The screw shaft and screw threads are hot-dipped galvanized in accordance with ASTM A123.

3.3.2 Welded Flanges and Flange Inserts: The welded flanges and flange inserts are made from carbon steel complying with GB/T 700 Q235B carbon steel specification having a minimum yield strength of 36 ksi (248 MPa) and a minimum ultimate tensile strength of 58 ksi (400 MPa). The flanges are hot-dipped galvanized as assemblies in accordance with ASTM A123.

4.0 DESIGN AND INSTALLATION

4.1 Design:

4.1.1 General: Engineering calculations (analysis and design) and drawings, prepared by a registered design professional, must be submitted to and approved by the code official for each project, and must be based on accepted engineering principles as described in IBC Section 1604.4. The engineering analysis must address ground screw system performance related to structural and geotechnical requirements. The calculations must address the ability (considering strength and stiffness) of the supported structure to transmit the applied loads to the Ground Screw System and the ability of the ground screws and surrounding soils to support the loads applied by the supported structure. The design method for the steel components is Allowable Strength Design (ASD), described in IBC Section 1602 and AISC 360 Section B3. The design method for soils is ASD as prescribed in IBC Sections 1801.2 and 1602.

The structural analysis must consider all applicable internal forces (axial forces, shears, bending moments and torsional moments, if applicable) due to applied loads; eccentricity between applied loads and reactions acting on the screw-supported structure; the loading exerted on the supported structure by the top connection devices; and the design span(s) between ground screws. The loading exerted on the supported structure by the top connection device should be equal in magnitude and opposite in direction to the force in the ground screw. A small lateral force is developed at the supported structure if the ground screw is not perfectly plumb but within the permitted inclination from vertical of ± 1 degree. The result of this analysis and the structural capacities must be used to select a ground screw system.

The ground screw embedment into the soil is based on the ground screw length and must be selected based on the project specific requirements.

For Ground Screw Systems subject to combined lateral and axial (compression or tension) loads, the allowable strength of the shaft under combined loads must be determined using the interaction prescribed in Chapter H of AISC 360.

The geotechnical analysis must address the suitability of the ground screw system for the specific project. It must also address the center-to-center spacing of the ground screws, considering both effects on the supported structure and group effects on the screw-soil capacity. The analysis must include estimates of the axial tension, axial compression and lateral capacities of the ground screws, whatever is relevant for the project, and the expected total and differential screw movements due to single screw or screw group, as applicable.

A site-specific geotechnical report is required for proper application of ground screw systems, unless exempted by the building official in accordance with IBC Section 1803.2. When required, geotechnical investigations shall be conducted in accordance with IBC Section 1803.2 and reported in accordance with IBC Section 1803.6. The geotechnical report must include, but not be limited to, the following information:

- 1. A plot showing the location of the soil investigation.
- 2. A complete record of the soil boring and penetration test logs and soil samples.
- 3. A record of the soil profile.
- 4. Information on groundwater table, frost depth and corrosion-related parameters, as described in Section 5.0 of this report.
- 5. Soil design parameters as shown in Table 5 of this report.
- 6. Confirmation of the suitability of ground screw systems for the specific project.
- Recommendations for design criteria, including but not limited to, mitigation of effects of differential settlement and varying soil strength; and effects of adjacent loads.
- Recommended center-to-center spacing of ground screws, if different from spacing noted in Section 5.0 of this report; and reduction of allowable loads due to the group action, if necessary.
- 9. Field inspection and reporting procedures (to include procedures for verification of the installed bearing capacity, when required).
- 10. Load test requirements.
- 11. Any questionable soil characteristics and special design provisions, as necessary.
- 12. Expected total and differential settlement.
- 13. The axial compression, axial tension and lateral load soil capacities if values cannot be determined from this evaluation report.

There are four primary structural/geotechnical elements associated with the ground system: top connection device capacity, ground screw shaft capacity, ground screw thread capacity and ground screw soil capacity, which are described in Sections 4.1.2, 4.1.3, 4.1.4, and 4.1.5, respectively. The allowable capacity of overall ground screw system is described in Section 4.1.6.

4.1.2 Top Connection Devices:

The allowable load capacities of the welded flanges are shown in Table 2A and flange inserts is shown in Table 2B of this report. The supported structural element and its connection to the top connection device of the ground screw system must be designed by a registered design professional and must not exceed the published values in Tables 2A and 2B of this report.

4.1.3 Ground Screw Shaft Capacity: The allowable load capacities of the screw shafts are shown in Tables 3A and 3B of this report.

The elastic shortening of the pile shaft will be 0.009 in/ft of shaft and the elastic lengthening will be 0.007 in/ft of shaft.

4.1.5 Soil Capacity: The allowable load capacity of the ground screws installed in specified soils is shown in Table 5 of this report. The soil capacity of the ground screws shall be determined by a registered design professional for soil conditions that substantially differ from those shown in the table. Soil conditions shall be determined by a site-specific geotechnical report, as described in Section 4.1.1.

4.1.6 Ground Screw System: The overall allowable load capacity of the Ground Screw System depends upon the analysis of interaction of top connection devices (Section 4.1.2), ground screw shafts (Section 4.1.3), ground screw threads (Section 4.1.4) and ground screw soil capacity (Section 4.1.5), and must be based on the lowest value of those for top connection device capacity, ground screw shaft capacity, ground screw thread capacity and ground screw soil capacity. The applied load from the supported structure must not exceed the overall allowable load capacity of the Ground Screw System.

4.2 Installation:

4.2.1 General: The Ground Screw Systems must be installed in accordance with this section (Section 4.2), the site-specific approved construction documents (engineering plans and specifications), and the manufacturer's written installation instructions. In case of a conflict, the most stringent requirement governs.

4.2.2 Ground Screw Installation:

- 1. The ground screws must be located and installed in accordance with the site-specific approved construction documents.
- 2. The equipment used to install the ground screws must be in accordance with the manufacturer's published installation instructions.
- 3. The ground screws must be installed in a clockwise rotation.
- 4. During installation the rotation of the ground screw must be accompanied by downward pressure (crowd) to advance the screw one thread pitch per rotation. The crowd force must not exceed 5 percent of the allowable axial compression load of the ground screw shaft or ground screw threads reported in Tables 3 or 4, as applicable, whichever is lower.
- 5. Ground screws must be installed vertically plumb into the ground with a ±1 degree of tolerance. The torque induced within the ground screws depends on the density of surrounding soils. The ground screw shaft maximum installation torque capacities are provided in Tables 3A and 3B and cannot be exceeded during ground screw installation.
- Torque must be measured with a calibrated in-line indicator or calibrated hydraulic torque motor via differential pressure. Calibration of torque motors and/or torque indicators must be performed on equipment whose calibration is traceable back to NIST (National Institute of Standards and Technology)
- The final depth must equal the length of the ground screws, except for 3 inches (76 mm) protruding from the ground surface. The length of the ground screw chosen must meet the minimum depth required for frost protection.
- 8. In order to avoid group effect for lateral loading, the center-to-center spacing of ground screws in the direction of lateral force must be at least eight times the ground screw outside diameter (76 or 114 mm).

- In order to avoid group effect for axial loading, the center-to-center spacing of ground screws must be at least three times the ground screw outside diameter (76 or 114 mm).
- 10. The eccentricity between the applied vertical load by supported structures and the center of the ground screw shaft must not exceed 5 percent of the shaft maximum diameter.
- 11. The field cutting, bolting and welding must be in accordance with the most restrictive requirements described in this evaluation report, IBC, AISC 360, and the manufacturer's written instructions.

4.2.3 Top Connection Devices: Once the ground screw has been installed, the supported structure must be connected to the top connection device (welded flange or flange insert) in accordance with the approved plans as determined by registered design professional. In addition to requirements in Section 4.2.2, the flange insert installation must comply with the following requirements:

- 1. The flange must be fully seated (bearing) on top of the ground screw and must be centered to the screw shaft diameter body.
- 2. Three (3) friction bolts as described in Section 3.2.2.4 of this report must be used to connect the ground screw to the flange insert collar. The bolts must be installed through the factory-welded nuts by hand tightening until contact with the flange insert collar is made and ensuring that the flange collar is centered to the screws shaft inside diameter body.
- 3. The friction bolts must be installed in a snug-tight condition until contact has been made with the friction bolt hex head and the factory-welded nuts plus ¼ turn.

4.3 Special Inspections:

Special inspection in accordance with Section 1705.1.1 of the IBC must be performed during the installation of the Ground Screw Systems (screw shafts and top connection devices). Where jobsite cutting, bolting or welding of steel elements is required, inspection in accordance with IBC Section 1705.2 is also required. Items to be recorded and confirmed by the special inspector include, but are not limited to, the following:

- 1. Verification of the product manufacturer.
- 2. Product configuration and identification (including catalog numbers) for ground screws and top connection devices.
- 3. Installation equipment used.
- 4. Written installation procedures.
- 5. Friction bolts as specified in the approved construction documents and this evaluation report.
- 6. Inclination and position of ground screws.
- 7. Verification that the maximum installation torque noted in Tables 3A and 3B, as applicable, is not exceeded. Verification that the ground screw soil embedment complies with Table 5, as applicable.
- 8. Verification that top flange bracket is installed in accordance with Section 4.2.3 of this report.
- 9. Compliance of the installation with the approved construction documents and this evaluation report, including conditions and limitations described in the footnotes to the tables in this report.

The American Ground Screw Ground Screw Systems described in this report comply with, or are suitable alternatives to what is specified in, those codes noted in Section 1.0 of this report, subject to the following conditions:

- **5.1** The American Ground Screw Ground Screw Systems are manufactured, identified and installed in accordance with this report, the approved construction documents (engineering drawings and specifications), and the manufacturer's written installation instructions, which must be available at the jobsite at all times during installation. In case of a conflict, the most stringent requirement governs.
- **5.2** The American Ground Screw Ground Screw Systems have been evaluated for support of structures assigned to Seismic Design Categories A and B and Site Classes A through D in accordance with IBC Section 1613. Ground screw systems that support structures assigned to Seismic Design Category C, D, E or F, or that are located in Site Class E or F, are outside the scope of this report, and are subject to the approval of the code official based upon submission of a design in accordance with the code by a registered design professional.
- **5.3** Ground screw systems are limited to support structures constructed from steel or wood materials.
- 5.4 Use of the ground screw systems in exposure conditions that are indicative of potential pile deterioration or corrosion situations as defined by the following: (1) soil resistivity less than 1,000 ohm-cm; (2) soil pH less than 5.5; (3) soils with high organic content; (4) soil sulfate concentrations greater than 1,000 ppm; (5) soils located in a landfill, or (6) soil containing mine waste is beyond the scope of the evaluation report.
- 5.5 Supported steel structures in contact with top connection devices must be zinc-coated steel in accordance with ASTM A123 or ASTM A153. Fasteners used to connect supported structure elements to top connection devices must be corrosion resistant.
- **5.6** The ground screws must be installed vertically into the ground, with a maximum allowable angle of inclination of ± 1 degree.
- **5.7** Special inspection is provided in accordance with Section 4.3 of this report.
- **5.8** Engineering calculations and drawings, in accordance with recognized engineering principles as described in IBC Section 1604.4, and complying with Section 4.1 of this report, are prepared by a registered design professional and approved by the code official.
- **5.9** The adequacy of the supported structures that are connected to the brackets must be verified by a registered design professional in accordance with applicable code provisions and subjected to the approval of the code official.

- **5.10** A geotechnical investigation report for each project site must be provided to the code official for approval in accordance with Section 4.1.1 of this report.
- **5.11** The load combinations prescribed in IBC Section 1605.3.1 or 1605.3.2 must be used to determine the applied loads. When using the alternative basic load combinations prescribed in IBC Section 1605.3.2, the allowable stress increases permitted by material chapters of the IBC or the referenced standards are prohibited.
- **5.12** In order to avoid the group effects on lateral load behavior, the minimum center-to-center spacing of ground screws in the direction of lateral force must be at least eight times the ground screw shaft outside diameter; and to avoid the group effects on axial load behavior, the center-to-center spacings of the ground screws must be at least three times the ground screw shaft outside diameter.
- **5.13** Settlement of helical piles is beyond the scope of this evaluation report and must be determined by a registered design professional.
- **5.14** The applied loads must not exceed the allowable capacities described in Section 4.1 of this report.
- **5.15** The ground screw systems are manufactured in Huanghua City, Hebei Province, China under a quality control program with inspections by ICC-ES.

6.0 EVIDENCE SUBMITTED

Data in accordance with the ICC-ES Acceptance Criteria for Screw Foundation Systems (SFSs) (AC443), dated June 2012 (editorially revised October 2019).

7.0 IDENTIFICATION

- 7.1 The ground screw products described in this report must be identified with a tag or label with the following information: report holder name and address; product model number and batch number and the ICC-ES evaluation report number (ESR-4226).
- **7.2** The report holder's contact information is the following:

AMERICAN GROUND SCREW, INC. 512 TUTTLE STREET DES MOINES, IOWA 50309 (833) 359-9475 www.americangroundsccrew.com

FIGURE 1—3-INCH DIAMETER MODEL 3 AND WELDED FLANGE GROUND SCREWS FLANGES (units shown in metric)

FIGURE 1—3-INCH DIAMETER MODEL 3 AND WELDED FLANGE GROUND SCREWS FLANGES (units shown in metric) (continued)

FIGURE 2—4.5-INCH DIAMETER MODEL 3 AND WELDED FLANGE GROUND SCREWS FLANGES (units shown in metric)

FIGURE 3—MODEL 3 AND WELDED FLANGE GROUND SCREWS (units in metric)

GROUND	Ground	Flange Inserts ¹								
SCREW MODEL No.	Screw Diameter (inches)	6x6 Flange	4x4 Flange ²	3-inch Flange ²	135 Degree Flange ²	Model 5 Flange	Model 6 Flange	Model 7 Flange	Model 8 Flange	Model 9 Flange
Model 3	3		See Figure 1 for product description and dimensional details							
	4.5		See Figure 2 for product description and dimensional details							

For **SI**: 1 inch= 25.4 mm.

¹Flange inserts must be used with Model 3 ground screws shown in Figure 3. ²Available only for 3-inch (76 mm) ground screw shaft.

TABLE 1B-WELDED FLANGE GROUND SCREW MODELS

GROUND	Ground	Welded Flanges ^{1,2}							
SCREW MODEL	Screw Diameter (inches)	6x6 Flange	4x4 Flange ³	3-inch Flange ³	Model 5 Flange	Model 6 Flange	Model 7 Flange	Model 8 Flange	Model 9 Flange
Welded	3		See Figure 1 for product description and dimensional details ²						
Flange 4.5 See Figure 2 for product description and dimensional detail							ails ²		

For SI: 1 inch=25.4 mm.

 1 Welded flanges are only available with Welded Flange Screw Model shown in Figure 3. 2 Welded flanges do not include the welded sleeve shown in Figure 1 or Figure 2.

³Available only for 3-inch-diameter (76 mm) ground screw shaft.

TABLE 2A-WELDED FLANGE GROUND SCREWS TOP CONNECTION ALLOWABLE CAPACITY^{1,2}

Wolded Flange	Ground Screw Diameter	Allowable Load Capacity (kips)				
Welded Flange	(inches)	Axial Tension	Axial Compression ³	Lateral		
Model 5	3	2.153	37.96	13.66		
Model 5	4.5	5.540	57.85	20.50		
Model 6	3	2.563	37.96	13.66		
Model 6	4.5	8.143	57.85	20.50		
Model 7	3	1.814	37.96	13.66		
Model 7	4.5	2.164	57.85	20.50		
Model 8	3	2.646	37.96	13.66		
Model 8	4.5	8.141	57.85	20.50		
Model 9	3	2.563	37.96	13.66		
Model 9	4.5	3.419	57.85	20.50		
6x6	3	0.286	37.96	13.66		
6x6	4.5	0.451	57.85	20.50		
4x4	3	0.660	37.96	13.66		
3-inch	3	0.921	37.96	13.66		

For SI: 1 inch= 25.4 mm; 1 kip=1000 lbf= 4.45 kN.

¹ Tabulated allowable load capacities include corrosion losses of 0.013-inch over a 50-year service life.

²Tabuluated allowable load values are based on internal strength properties of welded flanges. Connection capacity of flange to supported structural element must be determined by registered design professional.

³Tabulated allowabled axial compression capacity is based on welded flange bearing on top of ground screw shaft based on the assumption that the supported structure will transfer the load to the top of the ground screw shaft through direct bearing. Other applicable limit states must be determined by registered design professional.

Elango Insorts	Ground Screw Diameter	Allowable Load Capacity (kips)				
Flange insents	(inches)	Axial Tension	Axial Compression ³	Lateral		
4 x 4	3	0.660	37.96	3.08		
6 x 6	3	0.286	37.96	3.08		
6 x 6	4.5	0.451	57.85	5.28		
135 Degree	3	0.501	37.96	3.08		
3-inch Beam	3	0.921	37.96	3.08		
Model 5	3	1.445	37.96	3.08		
Model 5	4.5	4.004	57.85	5.28		
Model 6	3	1.618	37.96	3.08		
Model 6	4.5	4.029	57.85	5.28		
Model 7	3	1.247	37.96	3.08		
Model 7	4.5	1.767	57.85	5.28		
Model 8	3	1.618	37.96	3.08		
Model 8	4.5	4.029	57.85	5.28		
Model 9	3	1.618	37.96	3.08		
Model 9	4.5	2.663	57.85	5.28		

For SI: 1 inch= 25.4 mm; 1 kip=1000 lbf= 4.45 kN.

¹Tabulated allowable load capacities include corrosion losses of 0.013-inch over a 50-year service life.

²Tabuluated allowable load values are based on internal strength properties of welded flanges. Connection capacity of flange to supported structural element must be determined by registered design professional.

³Tabulated allowabled axial compression capacity is based on welded flange bearing on top of ground screw shaft based on the assumption that the supported structure will transfer the load to the top of the ground screw shaft through direct bearing. Other applicable limit states must be determined by registered design professional.

TABLE 3A—WELDED FL	ANGE GROUND SCREW	MODEL SHAFT ALL	OWABLE CAPACITY

Ground	Ground					
Screw Diameter (inches)	Screw	Axial Tension	Axial Compression ² (kips)	Late	Maximum	
	Length (mm)	(kips)		Bending (kip-ft)	Shear (kips)	Torque (ft-lbf)
	63	20.4	25.3	1.69	7.6	4829
3	70.9	20.4	25.3	1.69	7.6	4829
	78.7	20.4	25.3	1.69	7.6	4829
	63	25.7	38.7	3.75	11.5	6687
4.5	70.9	25.7	38.7	3.75	11.5	6687
	78.7	25.7	38.7	3.75	11.5	6687

For **SI:** 1 inch= 25.4 mm; 1 kip=1000 lbf= 4.45 kN; 1 ft-lb= 1.36 N-m.

¹Tabulated allowable load capacities include corrosion losses of 0.013-inch over a 50-year service life.

²Allowable axial compression capacity of the shaft is based on the ground screw installed in a fully braced condition.

TABLE 3B-MODEL 3 GROUND SCREW MODEL SHAFT ALLOWABLE CAPACITY

Ground	Ground Screw Length (mm)					
Screw Diameter		Axial Tension	Axial	Late	Maximum	
(inches)		(kips)	(kips)	Bending (kip-ft)	Shear (kips)	Torque (ft-lbf)
	63	9	25.3	1.83	7.6	4829
3	70.9	9	25.3	1.83	7.6	4829
	78.7	9	25.3	1.83	7.6	4829
4.5	63	9	38.7	4.36	11.5	6687
	70.9	9	38.7	4.36	11.5	6687
	78.7	9	38.7	4.36	11.5	6687

For SI: 1 inch= 25.4 mm; 1 kip=1000 lbf= 4.45 kN; 1 ft-lb= 1.36 N-m.

¹Tabulated allowable load capacities include corrosion losses of 0.013-inch over a 50-year service life.

²Allowable axial compression capacity of the shaft is based on the ground screw installed in a fully braced condition.

TABLE 4—WELDED FLANGE AND MODEL 3 GROUND SCREWS SCREW THREADS ALLOWABLE CAPACITY1

Ground Screw Diameter (inches)	Maximum Allowable Torsion (ft-lb)	Axial Tension/Compression Thread Capacity (kips)		
3	4829	39.2		
4.5	6687	47.7		

For SI: 1 inch= 25.4 mm; 1 kip=1000 lbf= 4.45 kN; 1 ft-lb= 1.36 N-m.

¹Tabulated allowable load capacities include corrosion losses of 0.013-inch over a 50-year service life.

TABLE 5-W	ANGE AND	MODEL 3		SCREWS	ALL OW/	ABLE SOIL	CAPACITY ⁴
IADLE J-W		MODEL 3	GILOOND	SCILING	ALLOW!		

Ground Screw Diameter (inches)	Ground Screw Length (inches)	Ground Screw Soil Embedment Depth (inches)	Axial Tension (lbf)		Axial Compression (lbf)		Lateral (Ibf) ³	
			Soil Classification					
			Silty Sand ¹	Sandy Clay ²	Silty Sand ¹	Sandy Clay ²	Silty Sand ¹	Sandy Clay ²
3	63	60	1700	6321	2450	8129	1774	2360
	70.9	67.9	1700	6321	2450	8129	1774	2360
	78.7	75.7	1700	6321	2450	8129	1774	2360
4.5	63	60	3400	9644	4977	12823	3519	4394
	70.9	67.9	3400	9644	4977	12823	3519	4394
	78.7	75.7	3400	9644	4977	12823	3519	4394

For SI: 1 inch= 25.4 mm; 1 lbf= 4.45 N.

¹Silty sand classified soil has a blow count of 13.

²Sandy clay classified soil has a blow count of 25 and a plasticity index of 30.

³Lateral load applied 12 inches above ground surface.

⁴Maximum installation torque must not exceed the maximum torque values in Table 3A and 3B of this report.

ICC-ES Evaluation Report

ESR-4226 CBC and CRC Supplement

Reissued March 2022 This report is subject to renewal March 2024.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 31 00 00—EARTHWORK Section: 31 63 00—Bored Piles

REPORT HOLDER:

AMERICAN GROUND SCREW, INC.

EVALUATION SUBJECT:

GROUND SCREW SYSTEMS

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the Ground Screw Systems, described in ICC-ES report ESR-4226, has also been evaluated for compliance with the codes noted below.

Applicable code editions:

■ 2019 California Building Code (CBC)

For evaluation of applicable chapters adopted by the California Office of Statewide Health Planning and Development (OSHPD) and Division of State Architect (DSA), see Sections 2.1.1 and 2.1.2 below.

■ 2019 California Residential Code (CRC)

2.0 CONCLUSIONS

2.1 CBC:

The Ground Screw Systems, described in Sections 2.0 through 7.0 of the evaluation report ESR-4226, comply with CBC Chapters 18, provided the design and installation are in accordance with the 2018 *International Building Code*[®] (IBC) provisions noted in the evaluation report and the additional inspection requirements of CBC Chapters 16 and 17, as applicable.

2.1.1 OSHPD: OSHPD requirements as indicated in the CBC are beyond the scope of this supplement.

2.1.2 DSA: DSA requirements as indicated in the CBC are beyond the scope of this supplement.

2.2 CRC:

The Ground Screw Systems, described in Sections 2.0 through 7.0 of the evaluation report ESR-4226, comply with CRC Chapter 3, provided the design and installation are in accordance with the 2018 *International Residential Code*[®] (IRC) provisions noted in the evaluation report.

This supplement expires concurrently with the evaluation report reissued March 2022.

