STORMWATER MANAGEMENT

Prepared By:

GPD Group 520 S. Main Street, Suite 2531 Akron, OH 44311

Prepared For: Hudson Engineering Department 1140 Terex Road Hudson, Ohio 44236

CENTRAL CAMPUS SITE IMPROVEMENTS

N. Oviatt Drive Widening

Property Owners: North Canton Board of Education

Civil Designer: Kendra Sanelli Project Manager: Michael Cefaratti, P.E.

Design Date: April 2025

GPD Project Number: 2024128.01

Revision Date

04/14/25 Date The Hudson City School District is proposing to widen the entrance off North Oviatt Street to better serve the Middle school during pick up and drop off times. The District looks to add one additional queuing lane south of the current drive with new site lighting, landscaping, accessible ramp and walk connection to the public R/W, and new pavement markings. There is approximately 0.69 acres of disturbance anticipated for this improvement including the demolition and abatement of a home, site grading and utility improvements.

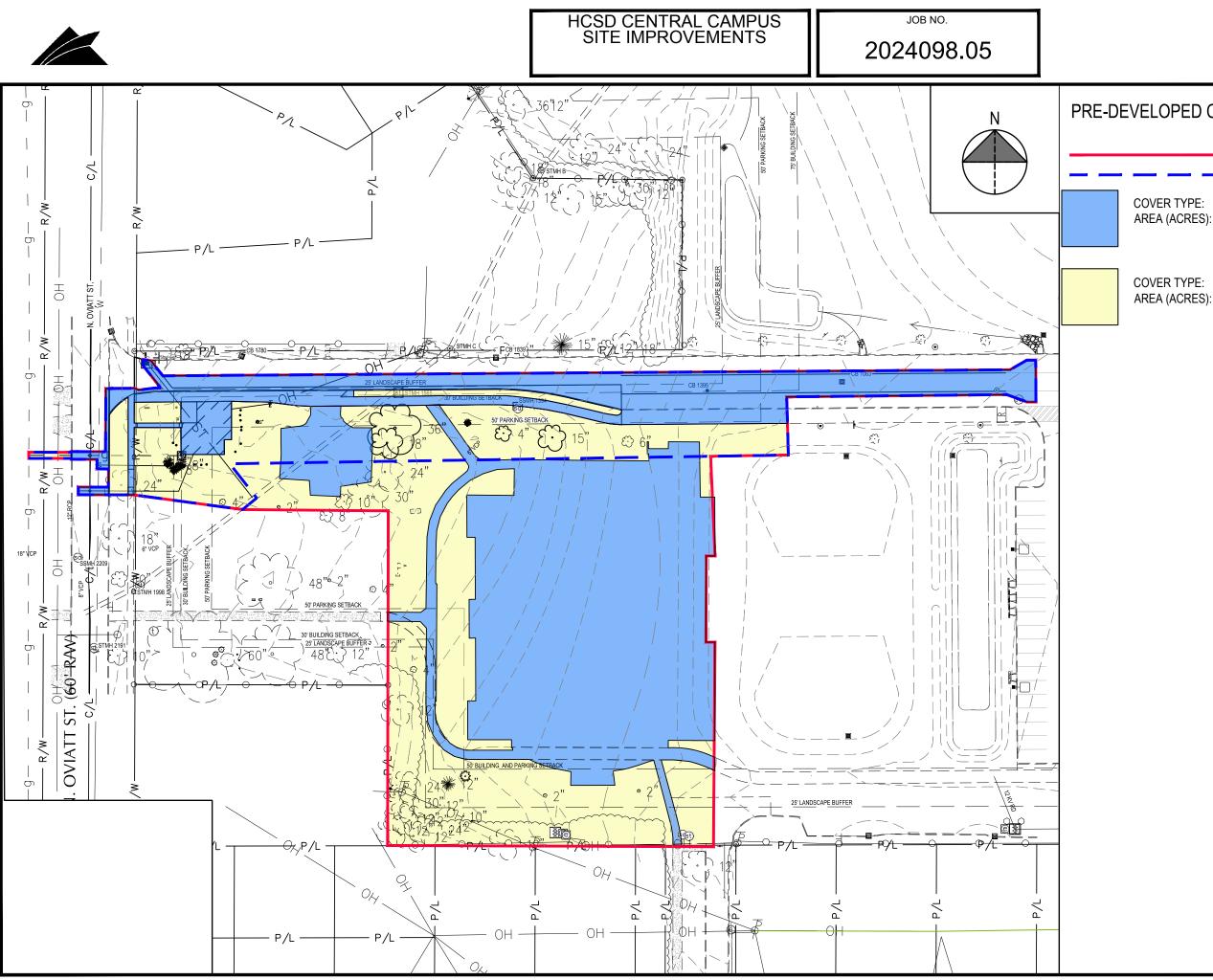
The subject parcel encompasses various school and school-related facilities over 91.94 acres. The site sits north of SR 303, east of Oviatt Street, south of Franklin and Aurora Street, and west of N. Hayden Parkway in the City of Hudson, Summit County, Ohio. The proposed work will affect the western exit of the site off North Oviatt Street. The total disturbance for this improvement makes up 0.8% of the total campus.

A multitude of projects have occurred on this property over the years as the needs of the District have evolved. Since the last stormwater design was completed for the New Middle School, a 1927 portion of the old Middle School was demolished along with its associated walks directly south of the proposed project. Additionally, a surface lot behind the was converted back to green space near the school's entrance off North Oviatt. Neither of these two demolition activities were accounted for in the most-recent Middle School Campus stormwater calculations. The removal of these two items resulted in a significant net reduction in impervious surface area.

Existing conditions, including these two impervious areas were modeled in the existing condition to fully understand the hydraulic impact removing nearly 0.75 acres of impervious had on the system. For this model, NOAA rainfall and intensity data was used.

Attached herein, two maps of the overall western entrance (1.99 acres) are shown. These maps indicate that with the existing home, surface lot and 1927 Middle School in tact in the predeveloped conditions, there is a total of 1.14 acres of impervious. However, with the demolition of these items and all lane widening proposed work, there is only 0.47 acres of impervious. The included hydrographs model proves that outflow rates are controlled to less-than the pre-existing conditions, therefore, detention requirements have been waived. GPD used the rational method to analyze the local watershed as described herein. Please see Summary Table below summarizing the results of the hydrograph analysis.

	PRE (CFS)	POST (CFS)
1 YR	4.253	2.995
2 YR	5.091	3.585
5 YR	6.164	4.341
10 YR	6.975	4.912
25 YR	8.023	5.650
50 YR	8.791	6.191
100 YR	9.569	6.739

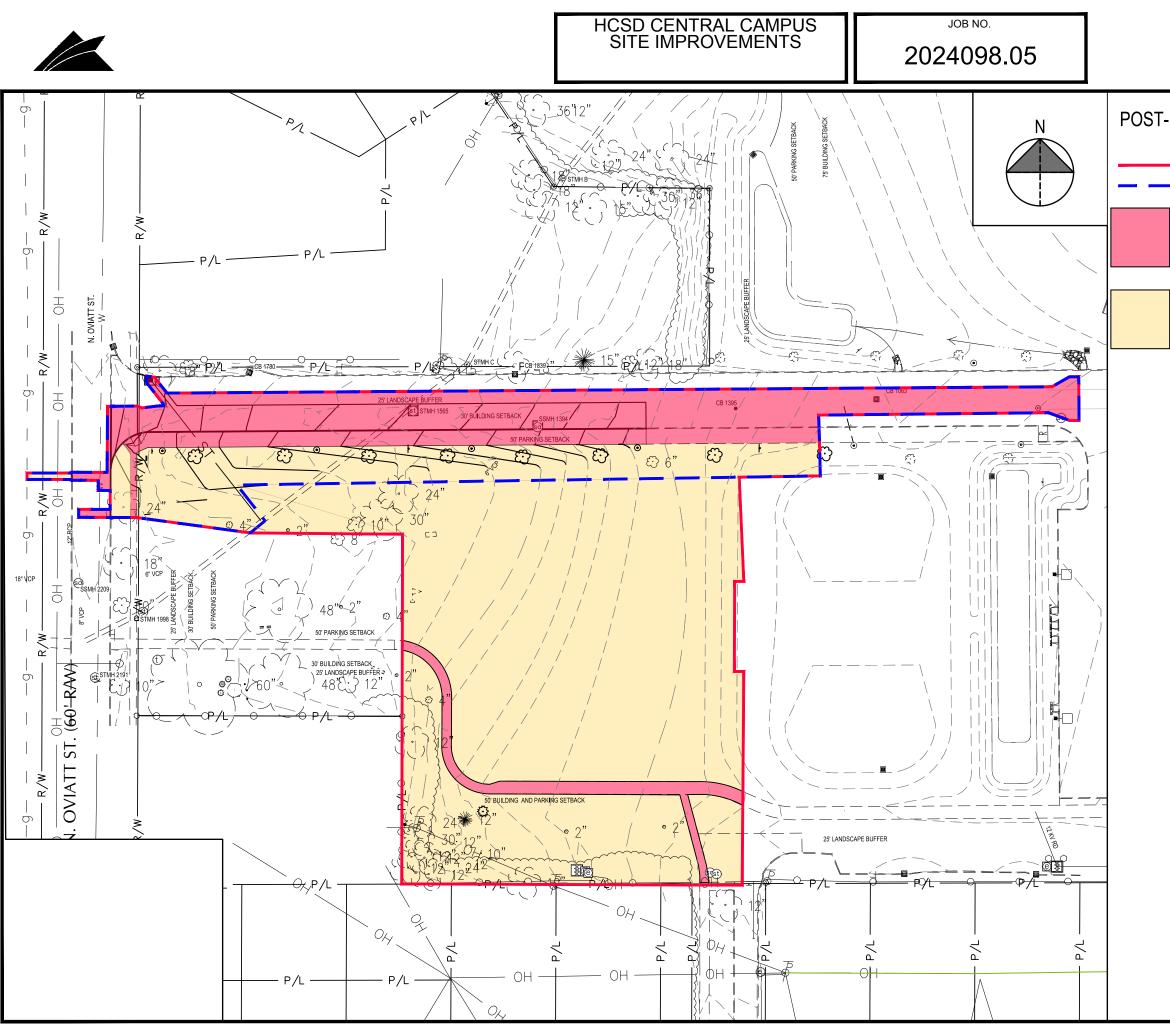

Table 1: Hydrograph Summary

Per the requirements of the *City of Hudson Stormwater Ordinance* and the *Ohio Environmental Protection Agency (OEPA)*, sites disturbing over one acre of land are required to provide post construction BMPs to treat runoff before it leaves the site. With a total disturbance of approximately 0.69 acres, post-construction water quality BMP's will not be required for this site. The true disturbance limit of work is shown on the maps herein.

In the proposed work area, rainfall currently sheet flows to 1 of 3 on-grade inlets on the north side of the drive before they tie into the City 3'x3' box culvert. Although redundant, a new inlet with 12" HDPE pipe is proposed downstream to collect any water that may have bypassed the upstream structures. Additionally, in the event that the upstream pipes are to become clogged, the new structure is designed to convey all these flows to the box culvert. Calculations can be found herein with map depicting tributary catchment.

Attachments:

- 1. Pre Development and Post Development Watershed Map (Overall) with disturbance limits
- 2. Storm Sewer Catchment Map and Calculations
- 3. Hydrographs
- 4. NOAA Intensity and Rainfall
- 5. Soil Mapping

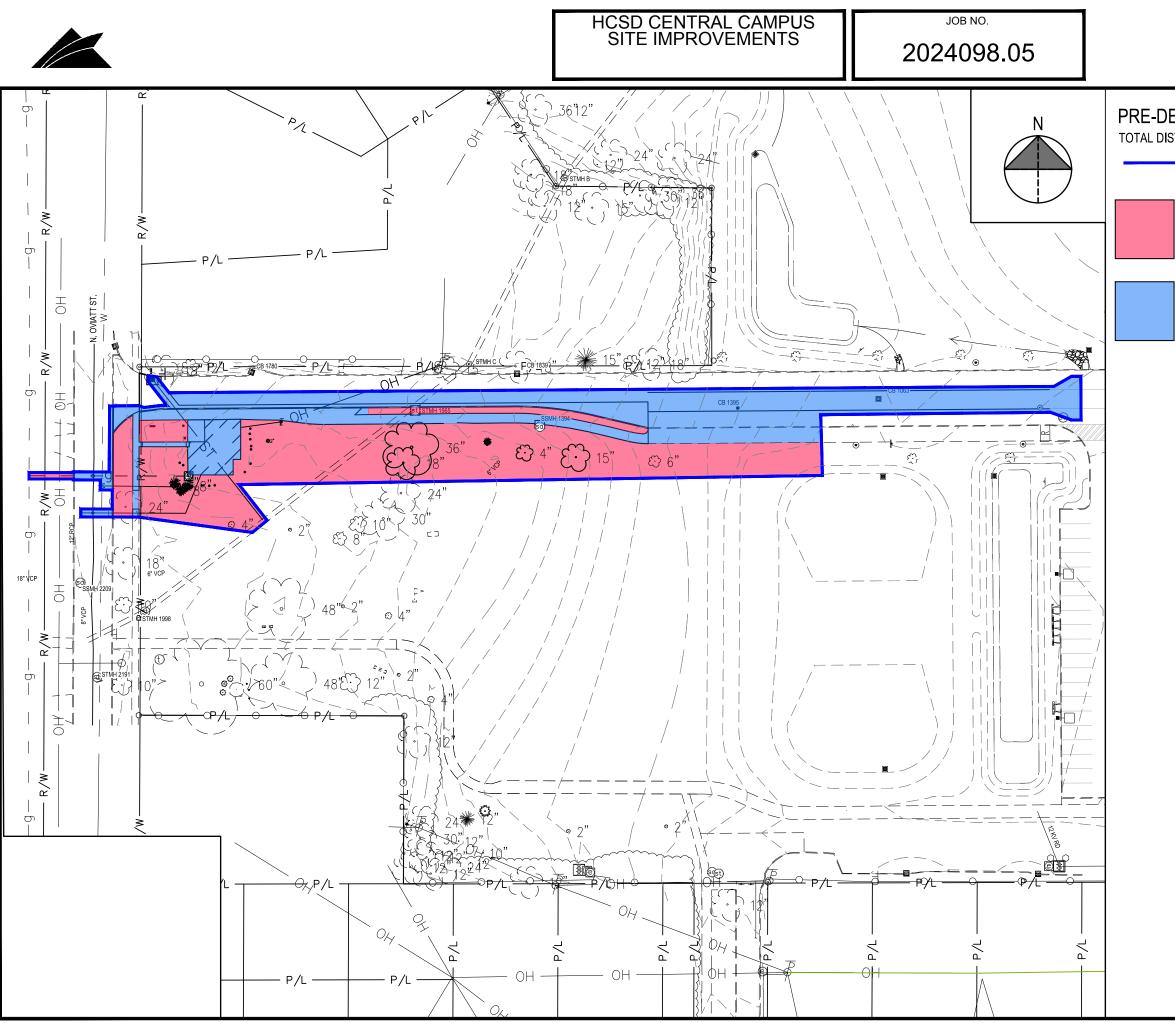


PRE-DEVELOPED CONDITIONS

BOUNDARY OF ANALYSIS = 1.99 ACRES DISTURBANCE LIMITS = 0.69 ACRES

IMPERVIOUS SURFACE COVER 1.14

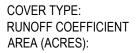
PERVIOUS SURFACE COVER 0.85


POST-DEVELOPED CONDITIONS

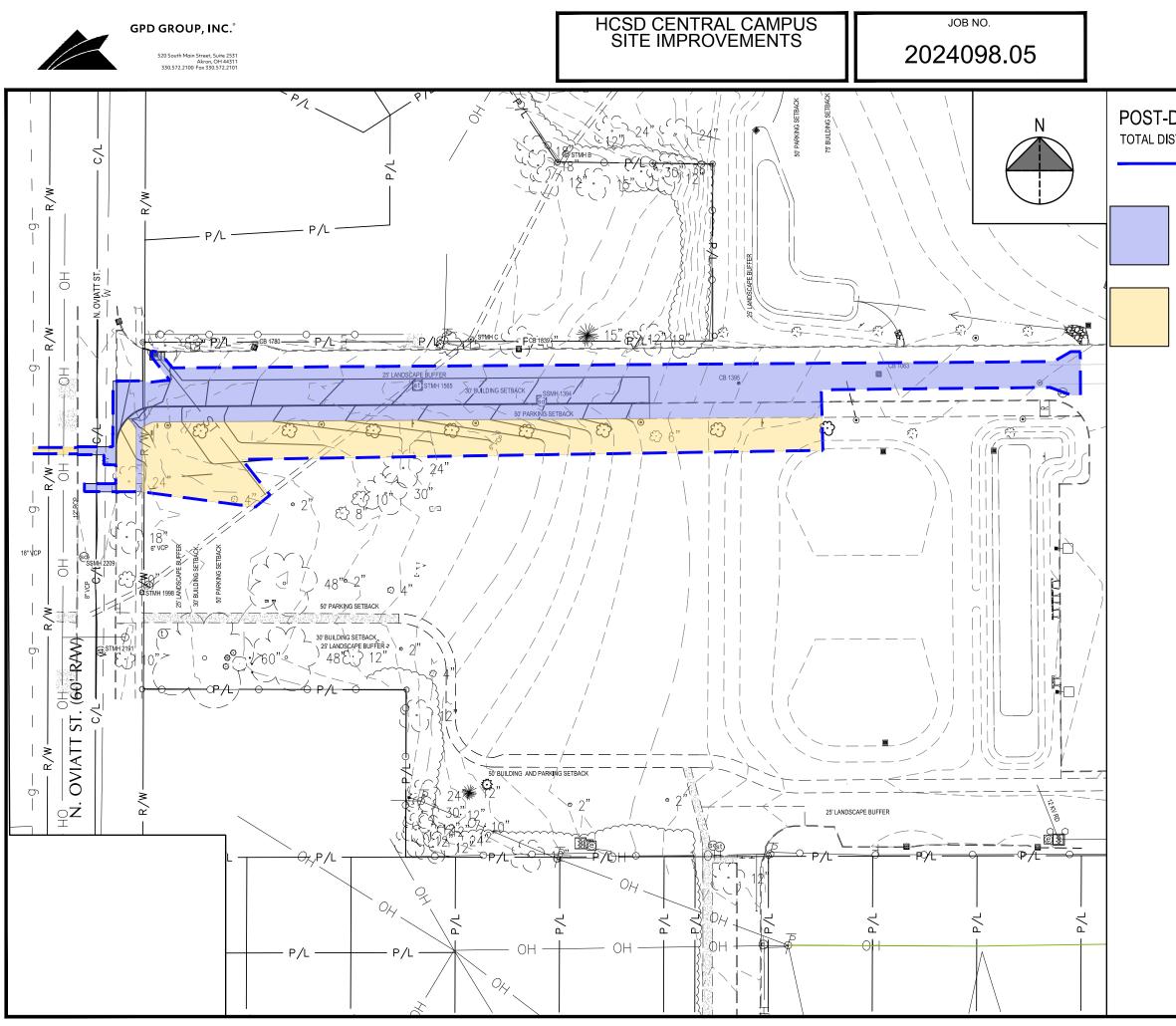
BOUNDARY OF ANALYSIS = 1.99 DISTURBANCE LIMITS = 0.69 ACRES

IMPERVIOUS SURFACE COVER 0.47

COVER TYPE: AREA (ACRES): PERVIOUS SURFACE COVER 1.52



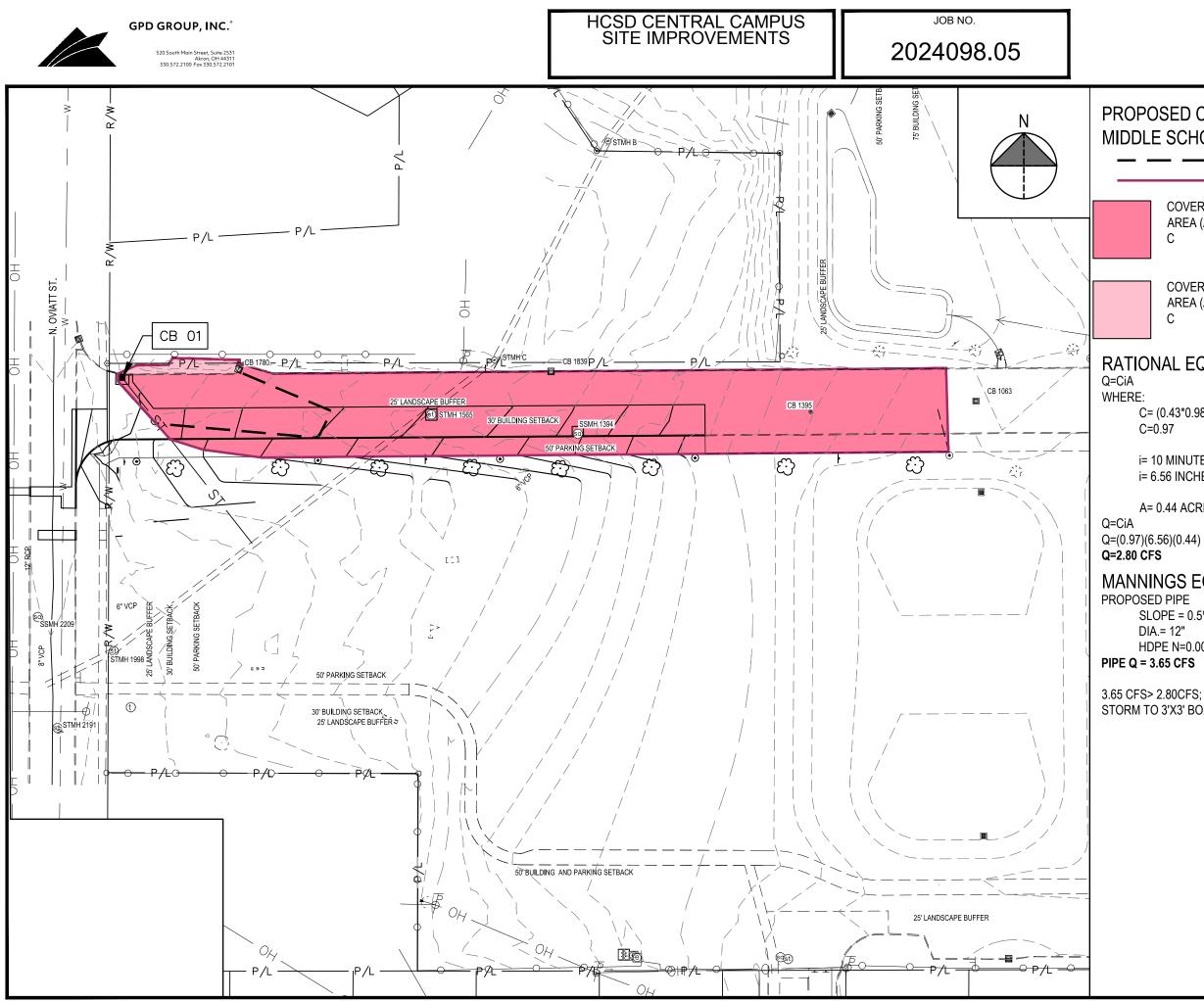
PRE-DEVELOPED CONDITIONS


TOTAL DISTURBED AREA UNDER ANALYSIS = 0.69 ACRES

BOUNDARY OF ANALYSIS

COVER TYPE: RUNOFF COEFFICIENT AREA (ACRES): IMPERVIOUS SURFACE COVER 0.98 0.33

PERVIOUS SURFACE COVER 0.35 0.36


POST-DEVELOPED CONDITIONS

TOTAL DISTURBED AREA UNDER ANALYSIS = 0.69 ACRES

BOUNDARY OF ANALYSIS

COVER TYPE: RUNOFF COEFFICIENT AREA (ACRES): IMPERVIOUS SURFACE COVER 0.98 0.42

COVER TYPE: RUNOFF COEFFICIENT AREA (ACRES): PERVIOUS SURFACE COVER 0.35 0.27

PROPOSED CATCHMENT MAP MIDDLE SCHOOL DRIVE WIDENING

TRIBUTARY BOUNDARY = 0.07 ACRES DESIGN BOUNDARY = 0.44 ACRES

COVER TYPE: AREA (ACRES): С

IMPERVIOUS SURFACE COVER 0.43 0.98

COVER TYPE: AREA (ACRES): С

PERVIOUS SURFACE COVER 0.01 0.35

RATIONAL EQUATION

C= (0.43*0.98)+(0.01*0.35)/0.44 C=0.97

i= 10 MINUTE 100 YEAR STORM i= 6.56 INCHES/HOUR (NOAA)

A= 0.44 ACRES

MANNINGS EQUATION

SLOPE = 0.5% DIA.= 12" HDPE N=0.009

3.65 CFS> 2.80CFS; THUS PIPE IS SIZED ADEQUATELY TO CARRY 100 YEAR STORM TO 3'X3' BOX CULVERT IN EVENT UPSTREAM INLETS ARE CLOGGED.

1

<u>Legend</u>

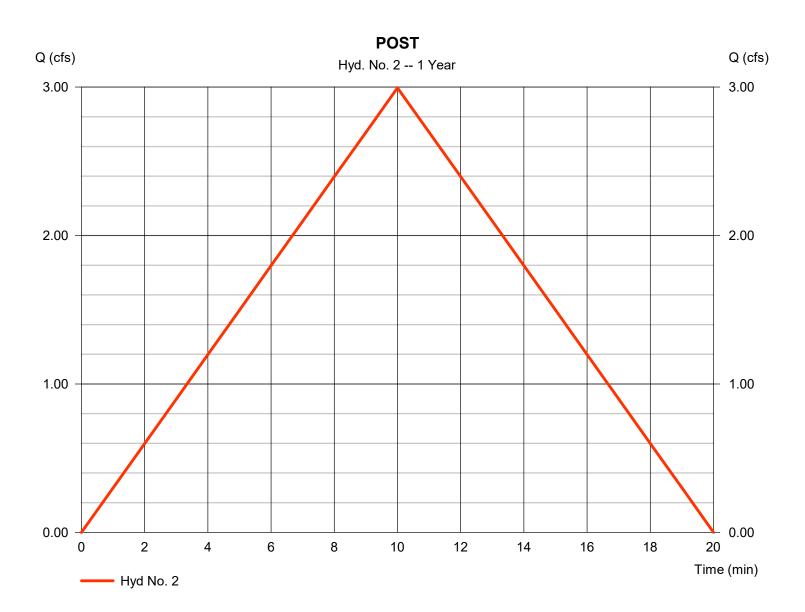
<u>Hyd.</u>	<u>Origin</u>	Description
1	Rational	PRE
2	Rational	POST

Project: a.gpw

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

lyd. Io.	Hydrograph	Inflow				Hydrograph Description							
0.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description		
1	Rational		4.253	5.091		6.164	6.975	8.023	8.791	9.569	PRE		
2	Rational		2.995	3.585		4.341	4.912	5.650	6.191	6.739	POST		

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	4.253	1	10	2,552				PRE
2	Rational	2.995	1	10	1,797				POST
a.g	pw				Return	Period: 1 Ye	ear	Monday, 04	4 / 14 / 2025


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Monday, 04 / 14 / 2025

Hyd. No. 2

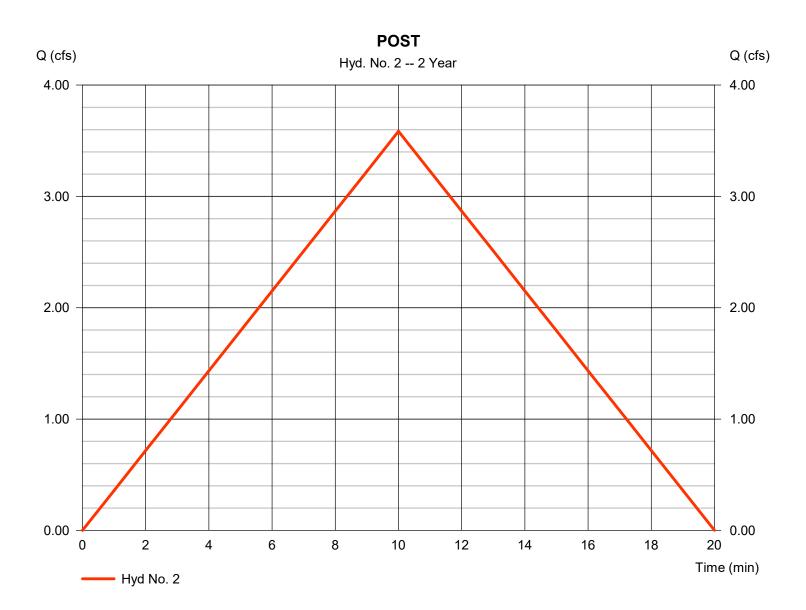
Hydrograph type	= Rational	Peak discharge	= 2.995 cfs
Storm frequency	= 1 yrs	Time to peak	= 10 min
Time interval	= 1 min	Hyd. volume	= 1,797 cuft
Drainage area	= 1.990 ac	Runoff coeff.	= 0.5*
Intensity	= 3.010 in/hr	Tc by User	= 10.00 min
IDF Curve	= Hudson IDF.IDF	Asc/Rec limb fact	= 1/1

* Composite (Area/C) = [(0.470 x 0.98) + (1.520 x 0.35)] / 1.990

4

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description		
1	Rational	5.091	1	10	3,054				PRE		
2	Rational	3.585	1	10	2,151				POST		
a.g	a.gpw					Return Period: 2 Year			Monday, 04 / 14 / 2025		

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024


Monday, 04 / 14 / 2025

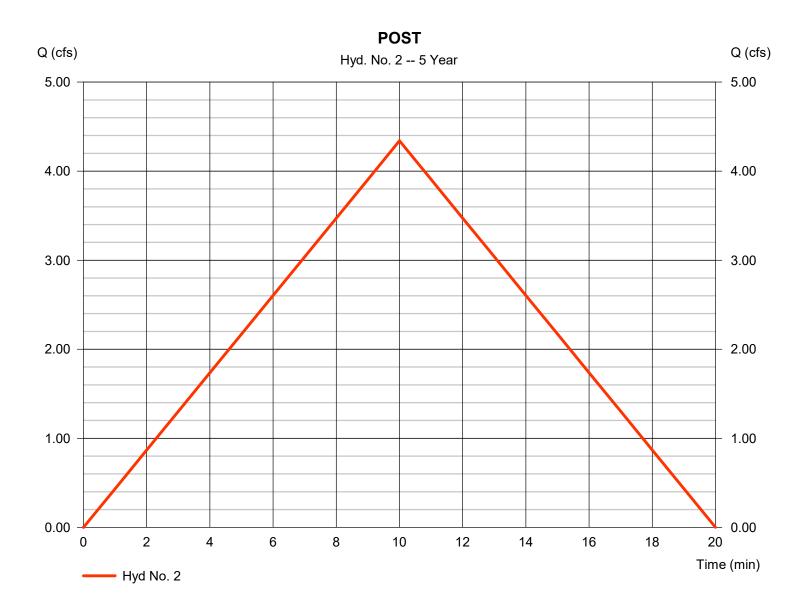
Hyd. No. 2

POST

Hydrograph type	= Rational	Peak discharge	= 3.585 cfs
Storm frequency	= 2 yrs	Time to peak	= 10 min
Time interval	= 1 min	Hyd. volume	= 2,151 cuft
Drainage area	= 1.990 ac	Runoff coeff.	= 0.5*
Intensity	= 3.603 in/hr	Tc by User	= 10.00 min
IDF Curve	= Hudson IDF.IDF	Asc/Rec limb fact	= 1/1

* Composite (Area/C) = [(0.470 x 0.98) + (1.520 x 0.35)] / 1.990

lyd. Io.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	6.164	1	10	3,698				PRE
2	Rational	4.341	1	10	2,604				POST
a.gpw					Return I	Period: 5 Ye	ear	Monday, 04	4 / 14 / 2025


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

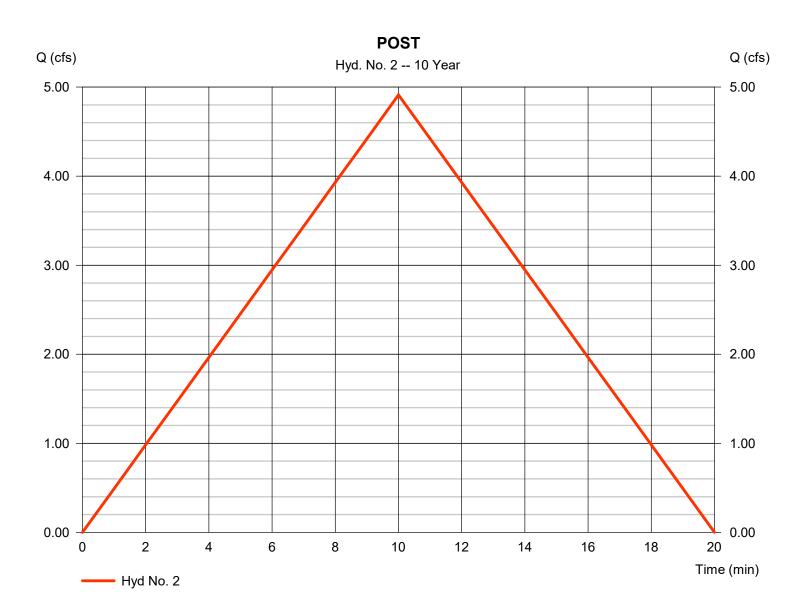
Monday, 04 / 14 / 2025

Hyd. No. 2

Hydrograph type	= Rational	Peak discharge	= 4.341 cfs
Storm frequency	= 5 yrs	Time to peak	= 10 min
Time interval	= 1 min	Hyd. volume	= 2,604 cuft
Drainage area	= 1.990 ac	Runoff coeff.	= 0.5*
Intensity	= 4.362 in/hr	Tc by User	= 10.00 min
IDF Curve	= Hudson IDF.IDF	Asc/Rec limb fact	= 1/1

* Composite (Area/C) = [(0.470 x 0.98) + (1.520 x 0.35)] / 1.990

8


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	6.975	1	10	4,185				PRE
2	Rational	4.912	1	10	2,947				POST
a.g	 wa				Return	ר Period: 10 א	/ear	Monday 04	4 / 14 / 2025

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

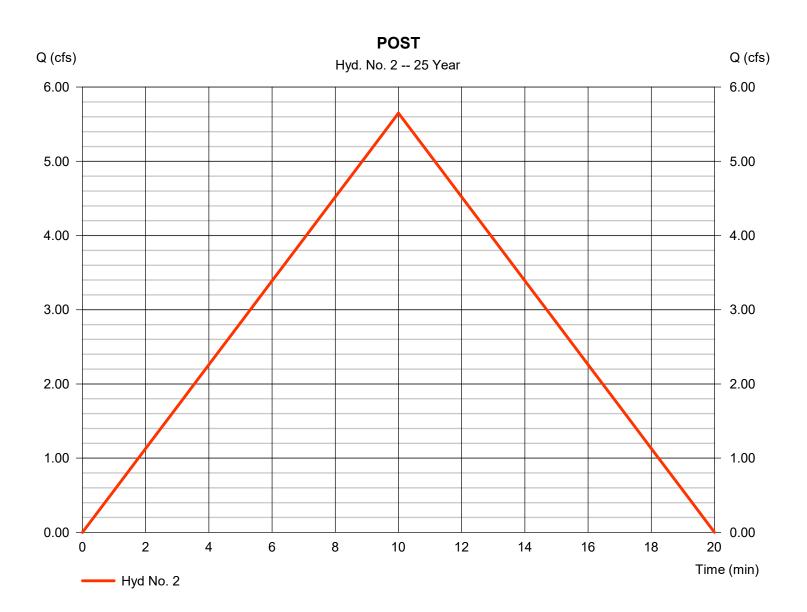
Hyd. No. 2

Hydrograph type	= Rational	Peak discharge	= 4.912 cfs
Storm frequency	= 10 yrs	Time to peak	= 10 min
Time interval	= 1 min	Hyd. volume	= 2,947 cuft
Drainage area	= 1.990 ac	Runoff coeff.	= 0.5*
Intensity	= 4.937 in/hr	Tc by User	= 10.00 min
IDF Curve	= Hudson IDF.IDF	Asc/Rec limb fact	= 1/1

* Composite (Area/C) = [(0.470 x 0.98) + (1.520 x 0.35)] / 1.990

Monday, 04 / 14 / 2025

10


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	8.023	1	10	4,814				PRE
2	Rational	5.650	1	10	3,390				POST
a.g	pw				Return F	Period: 25 Y	′ear	Monday, 04	/ 14 / 2025

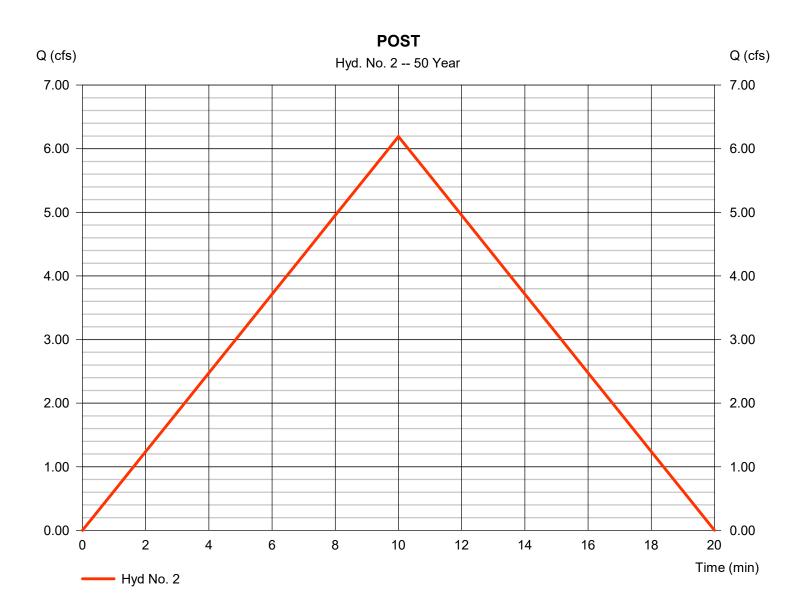
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 2

Hydrograph type	= Rational	Peak discharge	= 5.650 cfs
Storm frequency	= 25 yrs	Time to peak	= 10 min
Time interval	= 1 min	Hyd. volume	= 3,390 cuft
Drainage area	= 1.990 ac	Runoff coeff.	= 0.5*
Intensity	= 5.679 in/hr	Tc by User	= 10.00 min
IDF Curve	= Hudson IDF.IDF	Asc/Rec limb fact	= 1/1

* Composite (Area/C) = [(0.470 x 0.98) + (1.520 x 0.35)] / 1.990

Monday, 04 / 14 / 2025

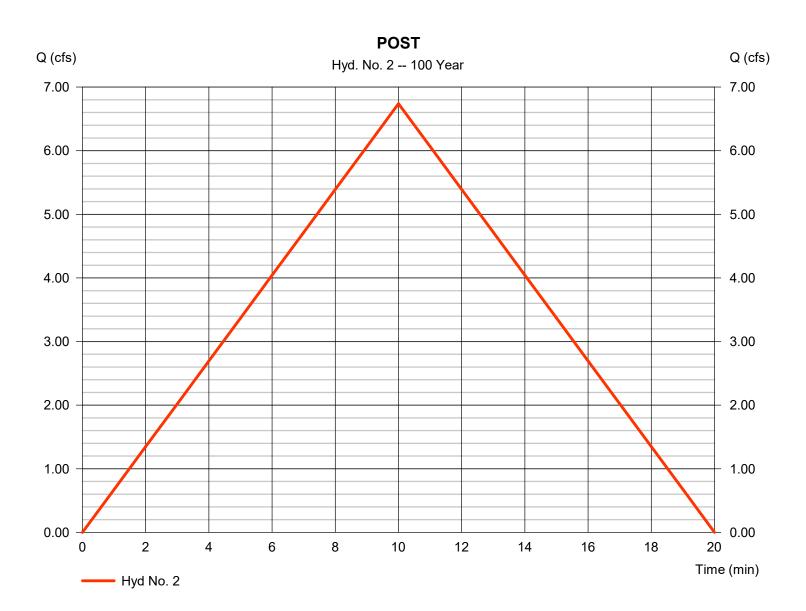

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	8.791	1	10	5,274				PRE
2	Rational	6.191	1	10	3,714				POST
a.g	pw			1	Return F	່ ⊃eriod: 50 ∖	′ear	Monday, 04	l / 14 / 2025

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 2

Hydrograph type	= Rational	Peak discharge	= 6.191 cfs
Storm frequency	= 50 yrs	Time to peak	= 10 min
Time interval	= 1 min	Hyd. volume	= 3,714 cuft
Drainage area	= 1.990 ac	Runoff coeff.	= 0.5*
Intensity	= 6.222 in/hr	Tc by User	= 10.00 min
IDF Curve	= Hudson IDF.IDF	Asc/Rec limb fact	= 1/1

* Composite (Area/C) = [(0.470 x 0.98) + (1.520 x 0.35)] / 1.990


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	9.569	1	10	5,741				PRE
2	Rational	6.739	1	10	4,043				POST
a.g	pw			1	Return F	Period: 100	Year	Monday, 04	4 / 14 / 2025

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 2

Hydrograph type	= Rational	Peak discharge	= 6.739 cfs
Storm frequency	= 100 yrs	Time to peak	= 10 min
Time interval	= 1 min	Hyd. volume	= 4,043 cuft
Intensity IDF Curve	= 1.990 ac = 6.773 in/hr = Hudson IDF.IDF	Runoff coeff. Tc by User Asc/Rec limb fact	= 4,043 curt = 0.5* = 10.00 min = 1/1

* Composite (Area/C) = [(0.470 x 0.98) + (1.520 x 0.35)] / 1.990

16

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Return Period	Intensity-Du	uration-Frequency E	quation Coefficients	(FHA)
(Yrs)	В	D	E	(N/A)
1	45.1304	10.4000	0.8978	
2	48.9583	10.0000	0.8710	
3	0.0000	0.0000	0.0000	
5	51.8623	9.6000	0.8320	
10	48.5688	8.5000	0.7836	
25	47.3122	7.6000	0.7392	
50	43.2550	6.4000	0.6932	
100	40.6329	5.5000	0.6537	

File name: Hudson IDF.IDF

Intensity = B / (Tc + D)^E

Return												
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	3.87	3.01	2.47	2.10	1.84	1.63	1.47	1.34	1.23	1.14	1.06	0.99
2	4.63	3.60	2.97	2.53	2.21	1.97	1.78	1.62	1.49	1.38	1.29	1.21
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	5.57	4.36	3.61	3.10	2.72	2.43	2.20	2.01	1.86	1.73	1.62	1.52
10	6.32	4.94	4.09	3.52	3.10	2.78	2.53	2.32	2.15	2.00	1.88	1.77
25	7.27	5.68	4.72	4.07	3.60	3.24	2.95	2.72	2.53	2.36	2.22	2.10
50	8.01	6.22	5.17	4.47	3.97	3.58	3.27	3.03	2.82	2.64	2.49	2.36
100	8.74	6.77	5.64	4.89	4.35	3.94	3.61	3.35	3.13	2.94	2.78	2.64

Tc = time in minutes. Values may exceed 60.

New MS\4_	Working Files\00	(software version	year) CAD\C\SWM\Detention\North Canton Rainfall Depth Data.IDF.pcp	

	Rainfall Precipitation Table (in)									
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr		
SCS 24-hour	2.03	2.43	1.00	3.03	3.53	4.28	4.93	5.63		
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

NOAA Atlas 14, Volume 2, Version 3 Location name: Hudson, Ohio, USA* Latitude: 41.2426°, Longitude: -81.4315° Elevation: 1102 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-b	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹											
Duration				Avera	ge recurren	ce interval (years)					
Duration	1	2	5	10	25	50	100	200	500	1000		
5-min	3.88 (3.54-4.26)	4.63 (4.22-5.09)	5.59 (5.09-6.13)	6.34 (5.75-6.94)	7.28 (6.58-7.97)	8.00 (7.20-8.76)	8.71 (7.80-9.53)	9.42 (8.39-10.3)	10.4 (9.17-11.4)	11.1 (9.71-12.2)		
10-min	3.01	3.62	4.35	4.89	5.57	6.07	6.56	7.03	7.63	8.06		
	(2.75-3.31)	(3.30-3.97)	(3.95-4.76)	(4.44-5.35)	(5.03-6.09)	(5.45-6.64)	(5.87-7.17)	(6.26-7.70)	(6.74-8.36)	(7.07-8.86)		
15-min	2.46 (2.24-2.70)	2.95 (2.69-3.24)	3.56 (3.24-3.90)	4.01 (3.64-4.39)	4.59 (4.14-5.02)	5.00 (4.50-5.48)	5.43 (4.86-5.94)	5.83 (5.19-6.38)	6.34 (5.60-6.96)	6.72 (5.89-7.38)		
30-min	1.63	1.97	2.44	2.79	3.24	3.58	3.92	4.25	4.70	5.04		
	(1.49-1.79)	(1.80-2.16)	(2.22-2.67)	(2.53-3.05)	(2.93-3.54)	(3.22-3.91)	(3.51-4.29)	(3.79-4.66)	(4.15-5.15)	(4.41-5.53)		
60-min	0.994	1.21	1.53	1.77	2.10	2.36	2.62	2.88	3.25	3.54		
	(0.907-1.09)	(1.10-1.33)	(1.39-1.68)	(1.61-1.94)	(1.90-2.30)	(2.12-2.58)	(2.35-2.86)	(2.57-3.16)	(2.87-3.56)	(3.10-3.89)		
2-hr	0.577	0.702	0.892	1.04	1.25	1.42	1.60	1.80	2.06	2.28		
	(0.526-0.634)	(0.640-0.772)	(0.812-0.978)	(0.946-1.14)	(1.13-1.37)	(1.28-1.56)	(1.43-1.76)	(1.59-1.97)	(1.81-2.27)	(1.99-2.51)		
3-hr	0.409	0.497	0.632	0.739	0.892	1.02	1.15	1.29	1.49	1.66		
	(0.372-0.450)	(0.452-0.547)	(0.574-0.695)	(0.669-0.812)	(0.803-0.978)	(0.910-1.12)	(1.02-1.26)	(1.14-1.42)	(1.30-1.64)	(1.43-1.82)		
6-hr	0.247	0.298	0.376	0.440	0.533	0.610	0.694	0.785	0.917	1.03		
	(0.225-0.271)	(0.272-0.327)	(0.343-0.412)	(0.399-0.481)	(0.481-0.582)	(0.547-0.666)	(0.617-0.758)	(0.691-0.857)	(0.796-1.00)	(0.881-1.13)		
12-hr	0.144	0.173	0.216	0.252	0.305	0.349	0.398	0.450	0.528	0.593		
	(0.131-0.159)	(0.158-0.191)	(0.196-0.238)	(0.229-0.278)	(0.274-0.335)	(0.312-0.384)	(0.353-0.437)	(0.396-0.495)	(0.457-0.581)	(0.508-0.655)		
24-hr	0.085	0.101	0.126	0.146	0.176	0.201	0.228	0.257	0.300	0.336		
	(0.078-0.092)	(0.094-0.110)	(0.116-0.137)	(0.135-0.159)	(0.161-0.191)	(0.183-0.217)	(0.206-0.247)	(0.230-0.279)	(0.264-0.326)	(0.292-0.366)		
2-day	0.049	0.058	0.072	0.083	0.099	0.112	0.126	0.142	0.164	0.182		
	(0.045-0.053)	(0.054-0.063)	(0.066-0.077)	(0.076-0.089)	(0.091-0.107)	(0.102-0.121)	(0.114-0.137)	(0.127-0.154)	(0.145-0.178)	(0.159-0.199)		
3-day	0.035	0.041	0.051	0.058	0.069	0.078	0.088	0.098	0.113	0.125		
	(0.032-0.037)	(0.038-0.045)	(0.047-0.055)	(0.054-0.063)	(0.064-0.075)	(0.072-0.085)	(0.080-0.095)	(0.088-0.106)	(0.100-0.123)	(0.110-0.137)		
4-day	0.027	0.033	0.040	0.046	0.055	0.061	0.069	0.076	0.087	0.096		
	(0.026-0.030)	(0.031-0.035)	(0.037-0.043)	(0.043-0.050)	(0.050-0.059)	(0.056-0.066)	(0.063-0.074)	(0.069-0.083)	(0.078-0.095)	(0.085-0.105)		
7-day	0.019	0.022	0.027	0.031	0.036	0.041	0.045	0.050	0.057	0.062		
	(0.018-0.020)	(0.021-0.024)	(0.025-0.029)	(0.029-0.033)	(0.034-0.039)	(0.038-0.044)	(0.042-0.049)	(0.046-0.054)	(0.051-0.061)	(0.055-0.068)		
10-day	0.015	0.018	0.022	0.024	0.028	0.031	0.035	0.038	0.042	0.046		
	(0.014-0.016)	(0.017-0.019)	(0.020-0.023)	(0.023-0.026)	(0.026-0.030)	(0.029-0.034)	(0.032-0.037)	(0.035-0.041)	(0.039-0.046)	(0.041-0.050)		
20-day	0.010	0.012	0.014	0.016	0.018	0.020	0.022	0.024	0.026	0.028		
	(0.010-0.011)	(0.012-0.013)	(0.014-0.015)	(0.015-0.017)	(0.017-0.020)	(0.019-0.022)	(0.021-0.023)	(0.022-0.025)	(0.024-0.028)	(0.025-0.030)		
30-day	0.009	0.010	0.012	0.013	0.015	0.016	0.017	0.019	0.020	0.021		
	(0.008-0.009)	(0.010-0.011)	(0.011-0.013)	(0.012-0.014)	(0.014-0.016)	(0.015-0.017)	(0.016-0.018)	(0.017-0.020)	(0.019-0.021)	(0.020-0.023)		
45-day	0.007	0.009	0.010	0.011	0.012	0.013	0.014	0.015	0.016	0.017		
	(0.007-0.008)	(0.008-0.009)	(0.009-0.010)	(0.010-0.011)	(0.012-0.013)	(0.012-0.014)	(0.013-0.015)	(0.014-0.016)	(0.015-0.017)	(0.016-0.018)		
60-day	0.006	0.008	0.009	0.010	0.011	0.011	0.012	0.013	0.014	0.014		
	(0.006-0.007)	(0.007-0.008)	(0.008-0.009)	(0.009-0.010)	(0.010-0.011)	(0.011-0.012)	(0.012-0.013)	(0.012-0.014)	(0.013-0.014)	(0.013-0.015)		

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

NOAA Atlas 14, Volume 2, Version 3 Location name: Hudson, Ohio, USA* Latitude: 41.2426°, Longitude: -81.4315° Elevation: 1101 ft** *source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

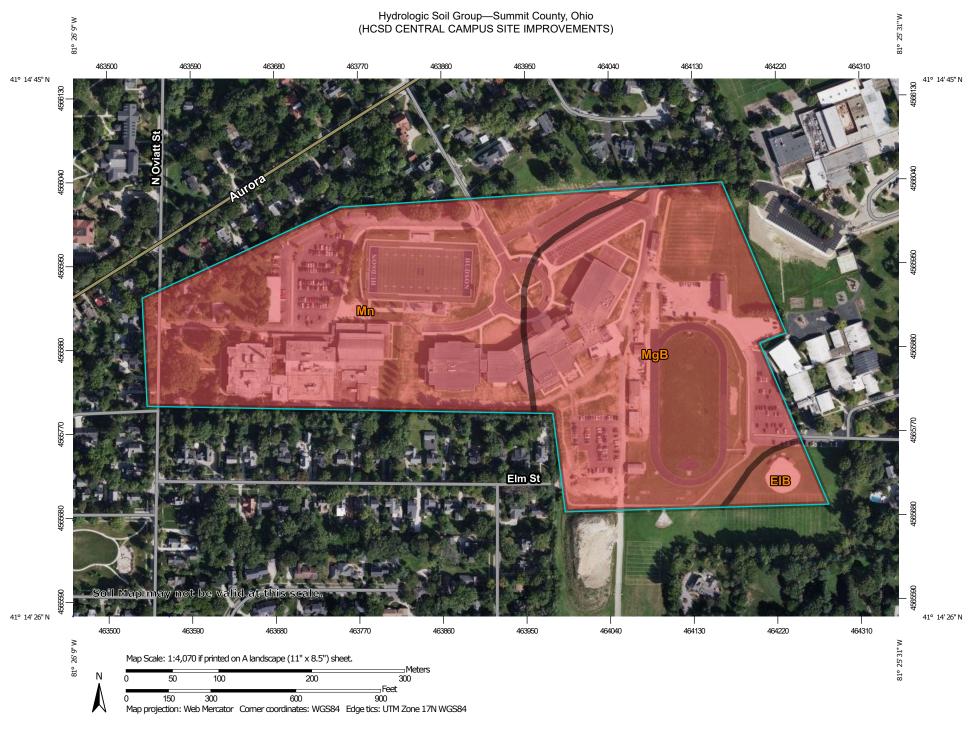
G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

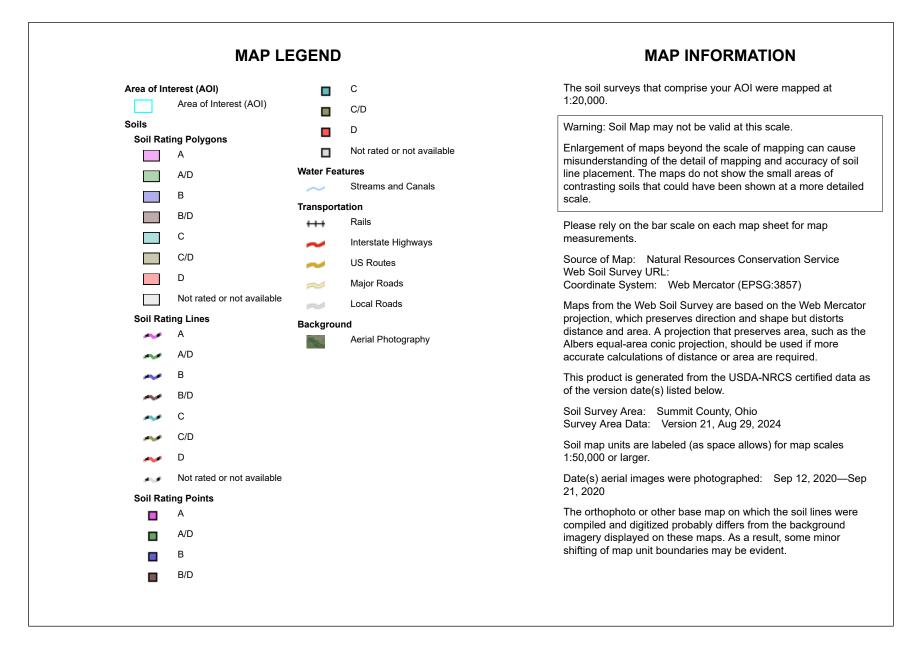
PDS	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration				Avera	ge recurrenc	e interval ()	/ears)				
Duration	1	2	5	10	25	50	100	200	500	1000	
5-min	0.323	0.386	0.466	0.528	0.607	0.667	0.726	0.785	0.865	0.923	
	(0.295-0.355)	(0.352-0.424)	(0.424-0.511)	(0.479-0.578)	(0.548-0.664)	(0.600-0.730)	(0.650-0.794)	(0.699-0.860)	(0.764-0.948)	(0.809-1.01)	
10-min	0.502	0.603	0.725	0.815	0.928	1.01	1.09	1.17	1.27	1.34	
	(0.458-0.551)	(0.550-0.661)	(0.659-0.794)	(0.740-0.892)	(0.838-1.02)	(0.909-1.11)	(0.979-1.20)	(1.04-1.28)	(1.12-1.39)	(1.18-1.48)	
15-min	0.615	0.737	0.890	1.00	1.15	1.25	1.36	1.46	1.59	1.68	
	(0.561-0.675)	(0.672-0.809)	(0.810-0.975)	(0.911-1.10)	(1.04-1.25)	(1.12-1.37)	(1.22-1.48)	(1.30-1.60)	(1.40-1.74)	(1.47-1.85)	
30-min	0.814	0.986	1.22	1.39	1.62	1.79	1.96	2.13	2.35	2.52	
	(0.743-0.894)	(0.900-1.08)	(1.11-1.34)	(1.26-1.52)	(1.46-1.77)	(1.61-1.96)	(1.76-2.14)	(1.89-2.33)	(2.08-2.58)	(2.21-2.77)	
60-min	0.994	1.21	1.53	1.77	2.10	2.36	2.62	2.88	3.25	3.54	
	(0.907-1.09)	(1.10-1.33)	(1.39-1.68)	(1.61-1.94)	(1.90-2.30)	(2.12-2.58)	(2.35-2.86)	(2.57-3.16)	(2.87-3.56)	(3.10-3.89)	
2-hr	1.16	1.40	1.78	2.08	2.50	2.85	3.21	3.59	4.13	4.57	
	(1.05-1.27)	(1.28-1.54)	(1.62-1.96)	(1.89-2.28)	(2.26-2.75)	(2.56-3.12)	(2.87-3.52)	(3.19-3.94)	(3.63-4.53)	(3.98-5.02)	
3-hr	1.23	1.50	1.90	2.22	2.68	3.06	3.46	3.88	4.48	4.98	
	(1.12-1.35)	(1.36-1.64)	(1.72-2.09)	(2.01-2.44)	(2.41-2.94)	(2.74-3.35)	(3.07-3.79)	(3.42-4.25)	(3.91-4.92)	(4.31-5.48)	
6-hr	1.48	1.79	2.25	2.64	3.19	3.66	4.16	4.70	5.49	6.16	
	(1.35-1.63)	(1.63-1.96)	(2.05-2.47)	(2.39-2.88)	(2.88-3.49)	(3.28-3.99)	(3.70-4.54)	(4.14-5.14)	(4.77-6.01)	(5.28-6.76)	
12-hr	1.74	2.09	2.61	3.04	3.68	4.22	4.80	5.43	6.37	7.15	
	(1.59-1.92)	(1.91-2.31)	(2.37-2.88)	(2.76-3.35)	(3.31-4.04)	(3.77-4.63)	(4.26-5.27)	(4.78-5.97)	(5.52-7.00)	(6.12-7.89)	
24-hr	2.04	2.44	3.03	3.52	4.24	4.84	5.49	6.19	7.21	8.07	
	(1.89-2.21)	(2.26-2.65)	(2.81-3.29)	(3.25-3.82)	(3.88-4.58)	(4.40-5.23)	(4.96-5.94)	(5.54-6.70)	(6.36-7.84)	(7.03-8.80)	
2-day	2.35 (2.19-2.55)	2.82 (2.62-3.05)	3.46 (3.21-3.74)	4.00 (3.69-4.31)	4.77 (4.38-5.15)	5.41 (4.94-5.84)	6.09 (5.52-6.59)	6.83 (6.13-7.41)	7.88 (6.97-8.59)	8.76 (7.64-9.60)	
3-day	2.52 (2.35-2.72)	3.01 (2.80-3.25)	3.68 (3.42-3.97)	4.24 (3.93-4.56)	5.03 (4.63-5.42)	5.67 (5.20-6.12)	6.36 (5.79-6.88)	7.10 (6.40-7.69)	8.14 (7.25-8.86)	9.01 (7.93-9.87)	
4-day	2.69	3.20	3.91	4.48	5.28	5.94	6.63	7.36	8.40	9.27	
	(2.51-2.89)	(2.99-3.45)	(3.64-4.20)	(4.16-4.82)	(4.89-5.69)	(5.47-6.40)	(6.06-7.16)	(6.68-7.97)	(7.53-9.13)	(8.22-10.1)	
7-day	3.23 (3.02-3.46)	3.84 (3.60-4.11)	4.64 (4.34-4.97)	5.29 (4.94-5.66)	6.20 (5.76-6.64)	6.94 (6.41-7.43)	7.71 (7.07-8.27)	8.51 (7.75-9.15)	9.62 (8.66-10.4)	10.5 (9.38-11.4)	
10-day	3.72 (3.50-3.97)	4.42 (4.15-4.71)	5.28 (4.96-5.63)	5.97 (5.60-6.36)	6.91 (6.46-7.36)	7.66 (7.12-8.17)	8.42 (7.79-8.99)	9.20 (8.47-9.86)	10.3 (9.36-11.1)	11.1 (10.0-12.0)	
20-day	5.16 (4.88-5.46)	6.09 (5.76-6.46)	7.16 (6.78-7.59)	8.00 (7.56-8.48)	9.11 (8.58-9.66)	9.96 (9.35-10.6)	10.8 (10.1-11.5)	11.6 (10.8-12.4)	12.7 (11.7-13.6)	13.5 (12.4-14.5)	
30-day	6.50 (6.16-6.85)	7.65 (7.26-8.06)	8.90 (8.44-9.38)	9.84 (9.33-10.4)	11.1 (10.5-11.7)	12.0 (11.3-12.7)	12.9 (12.1-13.6)	13.8 (12.9-14.6)	14.9 (13.9-15.8)	15.7 (14.5-16.7)	
45-day	8.32 (7.94-8.73)	9.77 (9.32-10.2)	11.2 (10.7-11.7)	12.3 (11.7-12.9)	13.7 (13.0-14.3)	14.7 (13.9-15.4)	15.6 (14.8-16.4)	16.6 (15.6-17.4)	17.7 (16.6-18.7)	18.5 (17.3-19.6)	
60-day	10.1 (9.62-10.5)	11.8 (11.3-12.3)	13.4 (12.8-14.0)	14.6 (14.0-15.3)	16.1 (15.4-16.9)	17.2 (16.4-18.1)	18.2 (17.3-19.2)	19.2 (18.2-20.2)	20.3 (19.2-21.5)	21.1 (19.9-22.4)	


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top


PF graphical

USDA Natural Resources

Conservation Service

Web Soil Survey National Cooperative Soil Survey 2/11/2025 Page 1 of 4

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
EIB	Ellsworth silt loam, 2 to 6 percent slopes	D	1.2	2.9%
MgB	Mahoning silt loam, 2 to 6 percent slopes	D	19.7	47.0%
Mn	Mahoning-Urban land complex, 0 to 2 percent slopes	D	21.1	50.1%
Totals for Area of Intere	est	42.0	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

