GOVERNING CODES & STANDARDS

	0BC 2024							
	IBC 2021	INTERNAT	ONAL BUILDING CODE					
STANDARDS:	ASCE 7-16 ADM ACI 318 TMS 402 ASC 360 AISC 341 AWS D1.1 AWS D1.3 AWS D1.4 AISI S100 AWC NDS AWC SPDWS ASTM	AMERICAN THE ALUM AMERICAN THE MASC AMERICAN AMERICAN AMERICAN AMERICAN STEEL AMERICAN AMERICAN AMERICAN	N SOCIETY OF CIVIL ENGINEERS: MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURES AINUM ASSOCIATION: SPECIFICATION FOR ALUMINUM STRUCTURES N CONCRETE INSTITUTE: BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE ONRY SOCIETY: BUILDING CODE REQUIREMENTS FOR MASONRY STRUCTURES N INSTITUTE OF STEEL CONSTRUCTION: SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS N INSTITUTE OF STEEL CONSTRUCTION: SEISMIC PROVISIONS FOR STRUCTURAL STEEL BUILDINGS N WELDING SOCIETY: STRUCTURAL WELDING CODE - STEEL N WELDING SOCIETY: STRUCTURAL WELDING CODE - SHEET STEEL N WELDING SOCIETY: STRUCTURAL WELDING CODE - REINFORCING STEEL N IRON AND STEEL INSTITUTE: NORTH AMERICAN SPECIFICATION FOR THE DESIGN OF COLD-FORMED L STRUCTURAL MEMBERS N WOOD COUNCIL: NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION N WOOD COUNCIL: SPECIAL DESIGN PROVISIONS FOR WIND AND SEISMIC N SOCIETY FOR TESTING AND MATERIALS					
DESIGN CRITERIA								
1. DEAD LOADING		П						
2. LIVE LOADING		D						
A. ROOF LIVE 3. RAIN LOADING	LOAD		20 PSF (REDUCIBLE)					
A. DESIGN RA	NINFALL: 4.5"/HC	UR (100-YE	AR, 1-HOUR RAINFALL)					
B. DESIGN RA	ATER AT LOWES		20 PSF					
4. SNOW LOADIN			20 PSF					
B. MIN ROOF	LOAD		25 PSF					
C. SNOW EXF	OSURE FACTOR		1.0					
D. SNOW LOA		FACTOR	1.0					
5 WIND LOADING			1.2					
A. RISK CATE	GORY		II					
B. ULTIMATE	WIND SPEED		110 MPH (ASD=SQRT(0.6)*Vult)					
C. WIND EXP	OSURE FACTOR		C					
D. DIRECTION	IALITY/OTHER FA	CTORS	Kd=0.85, G=0.85, Kz=0.85, Kzt=1.0					
	LUGY NE HEIGHT		$10^{\circ} - 0^{\circ}$					
G. SYSTEM N	OUNTING HEIGH	т	0' - 0"					
6. SEISMIC LOAD	S							
A. RISK CATE	GORY		II Contraction of the second					
B. SITE CLAS	S		D					
U.S _S								
D. S _{DS} F S.			0.049					
E. Ο ₁ F. S _{D1}			0.078					
G. SEISMIC D	ESIGN CATEGOR	Y (SDC)	В					
H. LONG TRA	NSITION PERIOD	(T _∟)	12					
I. LATERAL F	RESISTING SYSTE	M	NONSTRUCTURAL COMPONENTS (APPENDAGES & ORNAMENTATIONS)					
J. REDUNDAI	NCY FACTOR, p:	N	1.0					
K. UVERSTRE	INGTH FACTOR, (2.00					
M. AMPLIFICA	TION FACTOR:	AUTUN, N.	2.50					
7. SERVICEABILIT	'Y:							
a. TOTAL	LOAD DEFLECT	ON:	L/120					

EXISTING CONDITIONS & DEMOLITION

b. LIVE LOAD DEFLECTION:

L/180

1. EXISTING CONDITIONS

A. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND CONDITIONS OF EXISTING BUILDINGS AT THE CONSTRUCTION SITE AND REPORT ANY DISCREPANCIES FROM THE ASSUMED CONDITIONS SHOWN ON THE DRAWINGS TO THE ARCHITECT/STRUCTURAL ENGINEER OF RECORD PRIOR TO FABRICATION OR ERECTION OF ANY STRUCTURAL MEMBER.

B. EXISTING CONDITIONS SHALL BE SHOWN HALFTONE ON THE CONTRACT DRAWINGS UNLESS NOTED OTHERWISE. C. EXISTING CONDITIONS SHOWN ON THE CONTRACT DRAWINGS WERE OBTAINED FROM EXISTING CONSTRUCTION DOCUMENTS AND LIMITED SITE OBSERVATION. DRAWINGS OF EXISTING CONSTRUCTION ARE AVAILABLE TO THE CONTRACTOR UPON REQUEST TO THE OWNER. HOWEVER, THE AVAILABLE DRAWINGS OF THE EXISTING CONDITIONS ARE NOT NECESSARILY COMPLETE. THE CONTRACTOR SHALL FIELD VERIFY ALL APPLICABLE

INFORMATION. D. THE CONTRACTOR SHALL VERIFY THE LOCATION OF EXISTING UTILITIES PRIOR TO START OF CONSTRUCTION AND ENSURE PROTECTION OF EXISTING UTILITIES THAT REMAIN IN SERVICE.

<u>CONCRETE</u>

- A615, GRADE 60 (U.O.N.). 4. CLEAR COVER FOR REINFORCEMENT SHALL BE:
- STATED.

- TO EACH SIDE, TYPICAL).
- RECORD FOR APPROVAL OTHERWISE.

STRUCTURAL ALUMINUM & ALUMINUM WELDING:

- 2. ALL STRUCTURAL A. BEAMS, PURL B. ALL OTHER EX
- C. FASTENERS

- 2020 ADM M.7.3.

STRUCTURAL WOOD

- STANDARDS" OR 0.55 SPECIFIC GRAVITY MIN.

LOUVERED PERGOLA DESIGN & OPERATION:

1. CONCRETE MIXTURES SHALL BE DESIGNED TO REACH A COMPRESSIVE STRENGTH OF 3,000 PSI IN 28 DAYS.

2. NORMAL WEIGHT CONCRETE SHALL BE USED FOR ALL CONCRETE MEMBERS UNLESS NOTED OTHERWISE. NORMAL WEIGHT CONCRETE SHALL HAVE A CURED DENSITY OF 145 PCF ±5 PCF. WHERE LIGHTWEIGHT CONCRETE IS SPECIFIED THE CURED DENSITY SHALL BE 112 PCF ±3 PCF 3. ALL REINFORCEMENT SHALL BE DEFORMED BARS OF INTERMEDIATE GRADE NEW BILLET STEEL CONFORMING TO CURRENT REQUIREMENTS OF ASTM

A. FOOTINGS PERMANENTLY EXPOSED TO EARTH: 3"

B. UNFORMED FACES EXPOSED TO EARTH: 3"

C. FORMED FACES IN CONTACT WITH EARTH: 2"

5. THE USE OF RECYCLED CONCRETE IS PROHIBITED WITHOUT WRITTEN APPROVAL FROM THE STRUCTURAL ENGINEER OF RECORD. 6. EACH MIX SHALL BE UNIQUELY IDENTIFIED BY MIX NUMBER AND THE INTENDED LOCATION OF PLACEMENT ON THE SPECIFIC PROJECT SHALL BE CLEARLY

7. WHERE WELDS ARE INDICATED FOR REINFORCING STEEL ON THE DRAWINGS, REINFORCING STEEL SHALL BE A706, GRADE 60 UNLESS OTHERWISE NOTED. 8. WELDED WIRE REINFORCEMENT SHALL CONFORM TO THE MATERIAL REQUIREMENTS OF ASTM A1064. 9. ALL 90°, 135°, AND 180° HOOKED REINFORCEMENT SPECIFIED AND GRAPHICALLY DEPICTED IN THE CONTRACT DOCUMENTS SHALL BE DETAILED IN

ACCORDANCE WITH ACI 318 STANDARD HOOK GEOMETRY FOR DEFORMED BARS IN TENSION AND FOR STIRRUPS, TIES, AND HOOPS. 10. FOR EVERY VERTICAL OR HORIZONTAL BAR DISCONTINUED BY AN OPENING, ONE BAR (MINIMUM OF 2 BARS) SHALL BE ADDED AT SIDE OF OPENING (HALF 11. ALL LAP SPLICES SHALL BE CLASS B TENSION LAP SPLICES IN ACCORDANCE WITH ACI 318 UNLESS NOTED OTHERWISE. SEE LAP SPLICE SCHEDULE ON

SHEET SOO2 FOR LAP SPLICE LENGTHS. UNLESS NOTED AS CONTINUOUS, REINFORCEMENT SHALL ONLY BE SPLICED AT LOCATIONS SHOWN ON THE CONTRACT DOCUMENTS. SPLICES AT NON-SPECIFIED LOCATIONS SHALL BE SUBMITTED BY THE CONTRACTOR TO THE STRUCTURAL ENGINEER OF

12. A MINIMUM LAP SPLICE OF 8" SHALL BE PROVIDED AT ALL END AND SIDE LAP CONDITIONS FOR WELDED WIRE REINFORCEMENT UNLESS NOTED

1. ALL COMPONENTS SHALL BE STRUCTURAL ALUMINUM (U.N.O.) AND SHALL BE FABRICATED AND ERECTED ACCORDING TO THE GOVERNING BUILDING CODE AND MATERIAL STANDARDS REFERENCED ON THIS SHEET. HICK U.N.O. AND BE OF THE FOLLOWING ALLOY AND TEMPER:

. ALUMINUM SHALL	_ BE MIN 1/8" THI
INS, COLUMNS	6063-T6
(TRUSIONS	6063-T6
	SS 316

3. STRUCTURAL ALUMINUM SHALL BE FRAMED PLUMB AND TRUE AND ADEQUATELY BRACED DURING CONSTRUCTION. 4. WHERE ALUMINUM IS IN CONTACT WITH OTHER METALS EXCEPT 300 SERIES STAINLESS STEEL, ZINC OR CADMIUM AND THE FAYING SURFACES ARE EXPOSED TO MOISTURE, THE OTHER METALS SHALL BE PAINTED OR COATED WITH ZINC, CADMIUM, OR ALUMINUM. 5. UNCOATED ALUMINUM SHALL NOT BE EXPOSED TO MOISTURE OR RUNOFF THAT HAS COME IN CONTACT WITH OTHER UNCOATED METALS EXCEPT 300

SERIES STAINLESS STEEL, ZINC, OR CADMIUM. ALUMINUM SURFACES TO BE PLACED IN CONTACT WITH MASONRY, CONCRETE, WOOD, FIBERBOARD, OR OTHER POROUS MATERIAL THAT ABSORBS WATER SHALL BE PAINTED. 6. FOR ALUMINUM IN CONTACT WITH CONCRETE: ACCEPTABLE PAINTS: PRIMING PAINT (ONE COAT), SUCH AS ZINC MOLYBDATE PRIMER IN ACCORDANCE WITH FEDERAL SPECIFICATION TT-P-645B ("GOOD QUALITY", NO LEAD CONTENT). ALT: HEAVY COATING OF ALKALI-RESISTANT BITUMINOUS PAINT. ALT:

WRAP ALUMINUM WITH A SUITABLE PLASTIC TAPE APPLIED IN SUCH A MANNER AS TO PROVIDE ADEQUATE PROTECTION AT THE OVERLAPS. 7. ALUMINUM SHALL NOT BE EMBEDDED IN CONCRETE TO WHICH CORROSIVE COMPONENTS SUCH AS CHLORIDES HAVE BEEN ADDED IF THE ALUMINUM WILL BE ELECTRICALLY CONNECTED TO STEEL. EMBEDDED ALUMINUM ELEMENTS WILL BE COVERED WITH PLASTIC TAPE OR OTHERWISE PROTECTED AS PER

8. BOLT HOLES SHALL BE DRILLED IN THE SAME NOMINAL DIAMETER AS THE BOLT + 1/16".

9. ALUMINUM WELDING SHALL BE PERFORMED IN ACCORDANCE WITH WELD FILLER ALLOYS MEETING ANSI/AWS A5.10 STANDARDS TO ACHIEVE ULTIMATE DESIGN STRENGTH IN ACCORDANCE WITH THE ALUMINUM DESIGN MANUAL PART I-A, TABLE 7.3.1. ALL ALUMINUM CONSTRUCTION SHALL BE IN CONFORMANCE WITH THE TOLERANCES, QUALITY, AND METHODS OF CONSTRUCTION AS SET FORTH IN THE AMERICAN WELDING SOCIETY'S STRUCTURAL WELDING CODE ALUMINUM (D1.2). MINIMUM WELD IS 1/8" THROAT FULL PERIMETER FILLET WELD UNLESS OTHERWISE NOTED. 10. STAINLESS STEEL FASTENERS SHALL BE ASTM F593 316 SS COLD WORKED CONDITION. PROVIDE (5) PITCHES MINIMUM PAST THE THREAD PLANE FOR ALL

SCREW CONNECTIONS. ALL FASTENER CONNECTIONS TO METAL SHALL PROVIDE 2×DIAMETER EDGE DISTANCE AND 3×DIAMETER SPACING. 11. SELF-DRILLING SCREWS SHALL BE TEK BRAND / ALL POINTS FASTENERS OF SIZE #14, STAINLESS STEEL 300 SERIES, WITH MINIMUM 1/2" THREAD ENGAGEMENT BEYOND THE CONNECTED PART, UNLESS OTHERWISE NOTED.

12. THE CONTRACTOR IS RESPONSIBLE TO INSULATE ALL MEMBERS FROM DISSIMILAR MATERIALS TO PREVENT ELECTROLYSIS.

1. ALL DIMENSION LUMBER SHALL BE STRUCTURAL GRADE #2 SOUTHERN YELLOW PINE OR BETTER MEETING APPLICABLE REQUIREMENTS OF THE SOUTHERN PINE INSPECTION BUREAU (SPIB) AND PRESSURE-IMPREGNATED (PT) BY AN APPROVED PROCESS (ACQ 0.4 PRESSURE TREATED) PRESERVATIVE IN ACCORDANCE WITH THE APPLICABLE PROVISIONS OF THE BUILDING CODE AND AMERICAN WOOD PRESERVERS ASSN (AWPA) "BOOK OF

2. MEMBER SIZES SHOWN ARE NOMINAL UNLESS NOTED OTHERWISE.

3. ALL METAL CONNECTORS IN CONTACT WITH WOOD USED IN LOCATIONS EXPOSED TO WEATHER SHALL BE GALVANIZED.

4. NAILS SHALL PENETRATE THE SECOND MEMBER A DISTANCE EQUAL TO THE THICKNESS OF THE MEMBER BEING NAILED THERETO. THERE SHALL BE NOT LESS THAN 2 NAILS IN ANY CONNECTION. 5. MEMBERS SHALL BE FREE OF CRACKS AND KNOTS. MOISTURE CONTENT SHALL BE 19% OR LESS. DRY WOOD MAY SPLIT MORE EASILY. IF WOOD TENDS TO

SPLIT, PRE-BORING HOLES SHALL BE USED WITH DIAMETERS NOT EXCEEDING 3/4" OF THE NAIL DIAMETER OR USE A 5/32" BIT FOR SDS SCREWS. A FASTENER THAT SPLITS THE WOOD SHALL BE REEVALUATED PRIOR LOADING THE CONNECTION.

6. WOOD THAT IS IN CONTACT WITH CONCRETE OR MASONRY, AND AT OTHER LOCATIONS AS SHOWN ON STRUCTURAL DRAWINGS, SHALL BE PROTECTED WITH 30 # FELT OR PRESSURE TREATED IN ACCORDANCE WITH AITC-109. MEMBER SIZE SHOWN ARE NOMINAL.

1. THE LOUVERED ROOFING SYSTEM SHALL BE INSTALLED WITH THE AZENCO R-BLADE PRODUCT.

LOUVERS SHALL BE SPACED SUCH THAT THEY ALLOW 50% SYSTEM POROSITY WHEN FULLY OPENED.

3. LOUVERS SHALL BE ROTATED TO A 90 DEGREE 'OPEN' POSITION DURING ANY NAMED STORM OR WEATHER DESIGN EVENT TO PREVENT EXCESSIVE FORCE TO THIS STRUCTURE. THE OWNER SHALL BE NOTIFIED IN WRITING OF THIS AND THAT CARE SHALL BE TAKEN TO AVOID BUILDUP OF SNOW, DEBRIS, CONSTRUCTION LOADS, & ANY OTHER FORCES THAT CAN AFFECT THE INTEGRITY OF THIS DESIGN.

4. THE STRUCTURE SHALL BE POSTED WITH A LEGIBLE AND READILY VISIBLE DECAL OR PAINTED INSTRUCTIONS TO THE OWNER OR TENANT STATING TO REPOSITION THE LOUVERS AND WINDSCREENS DURING WIND OR SNOW ADVISORIES. THE CANOPY OWNER SHALL BE NOTIFIED OF THESE CONDITIONS BY THE PERMIT HOLDER AT THE TIME OF SALE.

5. SYSTEM SHALL BE EQUIPPED AND TELECO CERTIFIED TO OPERATE PROPERLY WITH SENSORS WHICH WILL PROMPT THE LOUVER BLADES TO ROTATE TO THE OPEN (VERTICAL) POSITION WHENEVER THE WIND SPEED REACHES 45 MPH MINIMUM, OR TEMPERATURE DROPS TO 32° FAHRENHEIT OR LOWER. AND/OR INCLUDE THE ABILITY FOR MANUAL OPENING AND LOCKING BY THE USER.

6. LOUVERED ROOF SYSTEM SHALL BE PER MANUFACTURER MAXIMUM SPANS OR BY OTHERS.

7. NO CERTIFICATION IS OFFERED FOR WATERPROOFING, SIZING, OR OPERATION OF GUTTERS. SYSTEM NOT DESIGNED FOR WATERSHED OF RAINFALL FROM ADJACENT ROOFS UNLESS SPECIFICALLY SHOWN HEREIN, TYP.

- WITHIN 5% OF THE INTENDED DESIGN. THE CONTRACTOR IS TO VERIFY ALL DIMENSIONS PRIOR TO INSTALLATION.
- REQUIRE ADDITIONAL SITE-SPECIFIC SEALED ENGINEERING.
- SHEET WITHIN THIS SET.
- A WRITTEN RESPONSE IN RETURN.
- WALLS, ETC. STAGE DURING CONSTRUCTION.
- DRAWINGS
- CONFINE THE SITE OR PROTECT ADJACENT PROPERTY FROM DAMAGE.
- CHEMICAL ENVIRONMENT
- CONSULTING A LICENSED PROFESSIONAL ENGINEER.

ELECTRONIC DATA/REPRODUCTION

- THEIR TRANSFER BE CONSIDERED A SALE. SIZE, AND QUANTITIES.
- DRAWINGS, INCLUDING, BUT NOT LIMITED TO: SHEET NUMBERS, SECTION MARKS, TITLE BLOCKS, AND REFERENCES TO THE CONTRACT DOCUMENTS.

1. ALLOWABLE DESIGN PRESSURES UTILIZED IN THIS DOCUMENT HAVE BEEN CALCULATED PER THE REQUIREMENTS OF THE CODES AND STANDARDS STATED HEREIN USING ASCE 7-16 ALLOWABLE STRESS DESIGN METHODOLOGY WITH THE CRITERIA AS OUTLINED HEREIN. THE CONTRACTOR SHALL CONTACT THE AUTHORITY HAVING JURISDICTION TO ENSURE APPROPRIATE CRITERIA TO BE USED BEFORE CONSTRUCTION BEGINS. 2. DIMENSIONS ARE SHOWN TO ILLUSTRATE DESIGN FORCES AND OTHER DESIGN CRITERIA. IN SOME CASES, DETAILS MAY BE INTENTIONALLY ALTERED FOR PRESENTATION PURPOSES. DO NOT SCALE DIMENSIONS ELECTRONICALLY OR OTHERWISE. FIELD INSTALLATION MAY VARY SLIGHTLY BUT MUST REMAIN

3. THIS STRUCTURE HAS BEEN DESIGNED AND SHALL BE FABRICATED IN ACCORDANCE WITH THE STRUCTURAL PROVISIONS OF THE ABOVE-REFERENCED BUILDING CODE. STRUCTURE SHALL BE FABRICATED IN ACCORDANCE WITH ALL GOVERNING CODES. THE CONTRACTOR SHALL INVESTIGATE AND CONFORM TO ALL LOCAL BUILDING CODE AMENDMENTS WHICH MAY APPLY AND GOVERN. DESIGN CRITERIA OR SPANS BEYOND STATED HEREIN MAY

4. THE CONTRACTOR SHALL CAREFULLY CONSIDER POSSIBLE IMPOSING LOADS ON ROOF, INCLUDING BUT NOT LIMITED TO ANY CONCENTRATED LOADS WHICH MAY JUSTIFY GREATER DESIGN CRITERIA. ALL STRUCTURAL MEMBERS AS SHOWN HAVE BEEN DESIGNED TO CARRY IN PLACE DESIGN LOADS ONLY; THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE SUPPORT OF ANY ADDITIONAL LOADS AND FORCES IMPOSED DURING MANUFACTURING, TRUCKING, ERECTING, AND HANDLING. SYSTEM NOT DESIGNED TO HANDLE CONCENTRATED LOADS FROM HUMAN ACTIVITY. SPECIAL INSPECTIONS MAY BE REQUESTED OR REQUIRED AT THE DISCRETION OF THE AUTHORITY HAVING JURISDICTION.

6. GENERAL STRUCTURAL NOTES ARE APPLICABLE TO THE DESIGN AND CONSTRUCTION OF THE ENTIRE PROJECT AND THUS ARE APPLICABLE TO EVERY

7. SHOULD THE CONTRACTOR ENCOUNTER A CONFLICT BETWEEN THESE DRAWINGS AND ANY OTHER CONTRACT DOCUMENT OR APPLICABLE CODE OR STANDARD OF PRACTICE DURING BIDDING, THE PROVISION RESULTING IN THE GREATER COST APPLIES. SHOULD THE CONTRACTOR ENCOUNTER A CONFLICT DURING CONSTRUCTION, THE CONTRACTOR SHALL SUBMIT A WRITTEN REQUEST FOR CLARIFICATION TO THE DESIGN TEAM, WHO WILL PROVIDE

8. THE CONTRACTOR SHALL SUPERVISE AND DIRECT ALL WORK AND SHALL BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, PROCEDURES, TECHNIQUES, AND SEQUENCE. THE CONTRACTOR HAS SOLE RESPONSIBILITY FOR THE QUALITY AND CORRECTNESS OF THE WORK. 9. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR COORDINATION OF THE STRUCTURAL WORK WITH OTHER TRADES INCLUDING, BUT NOT LIMITED TO: ARCHITECTURAL, CIVIL, AND MEP FOR FLOOR SLAB STEPS, SLOPES AND CURBS, FLOOR SLAB FINISH, OPENINGS IN STRUCTURAL FLOORS, ROOFS AND

10. THE BUILDING HAS BEEN DESIGNED BY THE STRUCTURAL ENGINEER OF RECORD TO RESIST THE CODE REQUIRED VERTICAL AND LATERAL FORCES IN ITS FULLY COMPLETED CONDITION. THE CONTRACTOR SHALL PROVIDE ALL REQUIRED BRACING, SHORING, AND OTHER CONSTRUCTION SUPPORTS NECESSARY TO ENSURE THE BUILDING'S STABILITY AND SAFETY THROUGHOUT THE DURATION OF CONSTRUCTION. FURTHER, THE CONTRACTOR SHALL NOT OVERLOAD THE STRUCTURE DURING CONSTRUCTION. THE CONTRACTOR SHALL RETAIN A LICENSED PROFESSIONAL ENGINEER TO PROVIDE THE ANALYSIS AND DESIGN NECESSARY TO DETERMINE POTENTIALLY OVERLOADED, UNSTABLE, OR HAZARDOUS CONDITIONS THAT MAY OCCUR AT ANY

11. THE CONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS AND COORDINATE WITH THE CONTRACT DOCUMENTS AND SHOP

12. THE CONTRACTOR SHALL NOT EMPLOY CONSTRUCTION MEANS OR METHODS THAT MAY DAMAGE UTILITIES, ADJACENT BUILDINGS, OR PROPERTY. DOCUMENTATION OF ADJACENT CONDITIONS PRIOR TO CONSTRUCTION IS RECOMMENDED. FURTHER, THE CONTRACTOR SHALL EITHER ADEQUATELY

13. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR PROJECT SAFETY AND OSHA REQUIREMENTS. SHOULD THE STRUCTURAL ENGINEER OF RECORD NOTIFY THE CONTRACTOR OF A POTENTIALLY UNSAFE CONDITION, IT IS SOLELY AS A COURTESY FROM ONE PROFESSIONAL TO ANOTHER. IT SHOULD NOT BE INTERPRETED AS THE STRUCTURAL ENGINEER OF RECORD ASSUMING ANY RESPONSIBILITY FOR PROJECT SAFETY.

14. ALL STRUCTURES REQUIRE PERIODIC MAINTENANCE TO EXTEND LIFE SPAN AND ENSURE STRUCTURAL INTEGRITY FROM EXPOSURE TO THE ENVIRONMENT. A PLANNED PROGRAM OF MAINTENANCE SHALL BE ESTABLISHED BY THE BUILDING OWNER. THIS PROGRAM SHALL INCLUDE, BUT NOT BE LIMITED TO: PAINTING OF STRUCTURAL STEEL, PROTECTIVE COATINGS FOR CONCRETE, SEALANTS, CAULKED JOINTS, EXPANSION JOINTS, CONTROL JOINTS, SPALLS AND CRACKS IN CONCRETE, AND PRESSURE WASHING OF EXPOSED STRUCTURAL ELEMENTS EXPOSED TO A SALINE OR OTHER HARSH

15. THE BUILDING OWNER SHALL NOT ALTER OR MODIFY ANY STRUCTURAL ELEMENT WITHOUT CONSULTING A LICENSED PROFESSIONAL ENGINEER. FURTHER, BUILDING OWNER SHALL NOT RENOVATE, REPURPOSE, ADD-ON TO, OR OTHERWISE MODIFY THE EXISTING STRUCTURAL SYSTEMS WITHOUT

1. ALL INFORMATION CONTAINED IN THE ELECTRONIC FILES OF THE CONTRACT DOCUMENTS ARE INSTRUMENTS OF SERVICE OF THE ARCHITECT/STRUCTURAL ENGINEER OF RECORD AND SHALL NOT BE USED FOR OTHER PROJECTS, ADDITIONS TO THE PROJECT, OR THE COMPLETION OF THE PROJECT BY OTHERS. ELECTRONIC FILES OF THE STRUCTURAL DOCUMENTS REMAIN THE PROPERTY OF AM STRUCTURES AND IN NO CASE SHALL

2. THE USE OF ELECTRONIC FILES OR REPRODUCTIONS OF THESE CONTRACT DOCUMENTS BY ANY CONTRACTOR, SUBCONTRACTOR, ERECTOR, FABRICATOR, OR MATERIAL SUPPLIER IN LIEU OF PREPARATION OF SHOP DRAWINGS SIGNIFIES THEIR ACCEPTANCE OF ALL INFORMATION SHOWN HEREIN AS CORRECT AND OBLIGATES THEMSELVES TO ANY JOB EXPENSE, REAL OR IMPLIED, ARISING DUE TO ANY ERRORS OR OMISSIONS THAT MAY OCCUR HEREIN. THE USE OF ELECTRONIC FILES DOES NOT RELIEVE THE CONTRACTOR'S RESPONSIBILITY FOR PROPER CHECKING AND COORDINATION OF DIMENSIONS, DETAILS,

3. DIMENSIONS AND ELEMENT SIZES AND LOCATIONS IN THE ELECTRONIC FILES MAY NOT BE PRECISE AND, IN SOME CASES, HAVE BEEN INTENTIONALLY ALTERED FOR PRESENTATION PURPOSES. DO NOT SCALE DIMENSIONS ELECTRONICALLY OR OTHERWISE. 4. WHEN USED FOR THE PREPARATION OF SHOP DRAWINGS, ALL INFORMATION NOT APPLICABLE TO THE SUBCONTRACT SHALL BE REMOVED FROM THE

ARE TO THE BEST OF COMPLY WITH THE APPOPERTY OF AM S USED BY THE OWNERD	CTU ENTER DRIVIER, FL 33458 - 951 - 0099 UCTURES.CO	The second secon				
THIS ITEM HAS BEEN DIGITALLY SIGNED AND SEALED BY ANDREW MCCANN, PE, ON 07/19/2024. PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFIED ON ANY ELECTRONIC COPIES.						
TIMAN WINDOW TREATMENTS, INC.	RAYMOND TATKO	1751 E Hines Hill Rd, Hudson, 0H 44236				

ISSUANCE SCHEDULE							
NO.	DESCRIPTION	DATE					
0.	INITIAL ISSUANCE	07/19/2024					

GENERAL NOTES

PROJECT # DATE DWN CHK

24577 07/19/2024 ΒZ AEM

()/

STRUCTURAL DRAWING LIST							
SHEET NUMBER SHEET NAME							
S1	GENERAL NOTES						
S2	GENERAL NOTES						
S3	FOUNDATION PLAN						
S4	ROOF FRAMING PLAN						
S5	REFLECTED CEILING PLAN						
S6	ELEVATIONS						
S7.0	DETAILS						
S7.1	DETAILS CONT						
S7.2	DETAILS CONT						

SCALE: AS INDICATED

ANCHORS & FASTENERS

1.	ALL BOLTS SHALL BE HOT DIPPED GALVANIZED, OR STAINLESS STEEL & MEET THE REQUIREMENTS OF ASTM A307 GRADE A. WASHERS SHALL BE USED	ADDL
	BETWEEN WOOD & BOLT HEAD & BETWEEN WOOD & NUT CONFORMING TO FEDERAL SPECIFICATION FF-W-92 FOR WASHERS. NUTS SHALL BE INSTALLED	ADJ
	SUCH THAT THE END OF THE THREADED ROD OR BOLT IS AT LEAST FLUSH WITH THE TOP OF NUT.	AFF
2.	BOLT HOLES SHALL BE AT LEAST A MINIMUM OF 1/32" AND NO MORE THAN A MAXIMUM OF 1/16" LARGER THAN THE BOLT DIAMETER.	ΔΙΤ
3.	NAILS SHALL PENETRATE THE SECOND MEMBER A DISTANCE EQUAL TO THE THICKNESS OF THE MEMBER BEING NAILED THERETO. THERE SHALL BE NOT	
л	LESS THAN 2 NAILS IN ANY CONNECTION.	APPROX
4.	DRY WOOD MAY SPLIT MORE EASILY. IF WOOD TENDS TO SPLIT, PRE-BORING HOLES SHALL BE USED WITH DIAMETERS NOT EXCEEDING 5/4 OF THE NAIL DIAMETER OR USE A 5/32" BIT FOR SDS SCREWS A FASTENER THAT SPLITS THE WOOD SHALL BE REEVALUATED PRIOR LOADING THE CONNECTION	ARCH
5	ANCHORS SHALL BE INSTALLED IN ACCORDANCE WITH MANUFACTUBERS' BECOMMENDATIONS MINIMUM EMBEDMENT SHALL BE AS NOTED HEREIN	ASD
0.	MINIMUM EMBEDMENT AND EDGE DISTANCE ARE DEPTHS INTO SOLID SUBSTRATE AND DO NOT INCLUDE THICKNESS OF STUCCO, FOAM, BRICK, AND OTHER	
	WALL FINISHES.	B/
6.	ANCHOR QUANTITIES INDICATED IN DETAILS ARE FOR GRAPHICAL PURPOSES ONLY. DO NOT SCALE DIAMETER, LENGTH, OR PENETRATION(S). HEAD STYLE(S)	קב סתום
	ARE FREELY INTERCHANGEABLE.	BLUG
7.	MECHANICAL ANCHORS (EXPANSION ANCHORS/EXPANSION BOLTS) INTO EXISTING CONCRETE AS SHOWN ON THE STRUCTURAL DRAWINGS SHALL BE ONE	BLKG
	OF THE FOLLOWING PRODUCTS:	BP
	A. KWIK BULT TZ ANCHORS MANUFACTURED BY HILTI FASTENING SYSTEMS	BOT
	B. STRUNG-BULTZ ANCHORS MANUFACTURED BY SIMPSON STRUNGTIE COMPANY C. POWER-STLID+ SD2 ANCHORS MANUEACTURED BY DEWALT	BTWN
8	MECHANICAL ANCHORS (EXPANSION ANCHORS/EXPANSION BOLTS) INTO EXISTING CONCRETE MASONBY AS SHOWN ON THE STRUCTURAL DRAWINGS SHALL	
0.	BE ONE OF THE FOLLOWING PRODUCTS:	0
	A. KWIK BOLT 3 ANCHORS MANUFACTURED BY HILTI FASTENING SYSTEMS	U
	B. WEDGE-ALL ANCHORS MANUFACTURED BY SIMPSON STRONGTIE COMPANY	CFS
	C. POWER-STUD+ SD1 ANCHORS MANUFACTURED BY DEWALT	CIP
9.	SCREW ANCHORS INTO EXISTING CONCRETE AND CONCRETE MASONRY AS SHOWN ON THE STRUCTURAL DRAWINGS SHALL BE ONE OF THE FOLLOWING	CL
	PRODUCTS:	CLB
	A. KWIK HUS EZ ANCHURS MANUFACTURED BY HILLI FASTENING SYSTEMS D. TITEN UD ANCHORS MANUFACTURED BY SIMPSON STRONGTIC COMPANY	CMU
	B. THEN HD ANCHORS MANUFACTURED BY SIMPSON STRONGTE COMPANY C. SCREW-ROLT+ ANCHORS MANUFACTURED BY DEWALT	CIVIO
10.	ADHESIVE ANCHORS (EPOXY ANCHORS/DRILL & EPOXY) INTO EXISTING CONCRETE AS SHOWN ON THE STRUCTURAL DRAWINGS SHALL BE ONE OF THE	COL
	FOLLOWING ADHESIVE PRODUCTS:	CONC
	A. HIT-HY200 EPOXY ADHESIVE WITH HAS ROD MANUFACTURED BY HILTI FASTENING SYSTEMS	CONN(S)
	B. AT-XP ADHESIVE MANUFACTURED BY SIMPSON STRONGTIE COMPANY WITH AN ALL-THREAD F1554 GRADE 36 STEEL ROD	CONST
	C. PURE110+ EPOXY ADHESIVE MANUFACTURED BY DEWALT WITH AN ALL-THREAD F1554 GRADE 36 STEEL ROD	CONT
11.	ADHESIVE ANCHORS (EPOXY ANCHORS/DRILL & EPOXY) INTO EXISTING CONCRETE MASONRY AS SHOWN ON THE STRUCTURAL DRAWINGS SHALL BE ONE OF	
	THE FOLLOWING ADHESIVE PRODUCTS:	COORD
	A. HIT-HY7U INJECTION ADHESIVE WITH HAS ROD MANUFACTORED BY HILT FASTENING SYSTEMS B. AT VD ADHESIVE MANUEACTUDED BY SIMDSON STOONGTIE COMDANY MITH AN ALL THDEAD E4554 CDADE 36 STEEL DOD	
	C. AC100+ GOLD MANUEACTURED BY DEWALT WITH AN ALL -THREAD F1554 GRADE 36 STEEL ROD	D&E
12.	ADHESIVE FOR ANCHORING REINFORCING BARS (REBAR) INTO EXISTING CONCRETE AS SHOWN ON THE STRUCTURAL DRAWINGS SHALL BE ONE OF THE	db
	FOLLOWING ADHESIVE PRODUCTS:	0
	A. HIT-HY200 EPOXY ADHESIVE MANUFACTURED BY HILTI FASTENING SYSTEMS	Ø
	B. AT-XP ADHESIVE MANUFACTURED BY SIMPSON STRONGTIE COMPANY	Q Q
	C. PURE110+ EPOXY ADHESIVE MANUFACTURED BY DEWALT	DIAG
13.	THE GENERAL CONTRACTOR SHALL OBTAIN APPROVAL FROM THE STRUCTURAL ENGINEER OF RECORD PRIOR TO USING POST-INSTALLED ANCHORS FOR	DIM(S)
лл	MISSING OR MISPLACED CAST-IN-PLACE ANCHORS.	DL
14.		DWG(S)
	FOUNALENT CAPACITY USING THE APPROPRIATE DESIGN PROCEDURE BEOLIRED BY THE REFERENCED BUILDING CODE	
15.	LOCATE, BY NON-DESTRUCTIVE MEANS, ALL EXISTING REINFORCEMENT, AND AVOID DURING INSTALLATION OF ANCHORS. IF EXISTING REINFORCEMENT	
	LAYOUT PROHIBITS THE INSTALLATION OF ANCHORS AS INDICATED ON THE STRUCTURAL DRAWINGS, THE CONTRACTOR SHALL NOTIFY THE STRUCTURAL	
	ENGINEER OF RECORD IMMEDIATELY.	
16.	HOLES SHALL BE DRILLED AND CLEANED, AND ANCHORS SHALL BE INSTALLED PER THE MANUFACTURER'S PUBLISHED INSTALLATION INSTRUCTIONS.	
	DEFECTIVE OR ABANDONED HOLES SHALL BE FILLED WITH NON-SHRINK GROUT OR AN INJECTABLE ADHESIVE MATCHING THE ADJACENT CONCRETE	
-	COMPRESSIVE STRENGTH.	
17.	MASUNKY ANUHUKS SHALL NUT BE INSTALLED IN HULLUW GURE MASUNKY. IF INSTALLATION INTO HULLUW CORE MASUNKY IS DESIRED, SUBMIT	
18	ALTERNATIVE FRODUCTION NEVIEW AND AFFROVAL DI THE STRUCTURAL ENGINEER OF NEUORD. MASONRY ANCHORS SHALL NOT RE INSTALLED IN HEAD JOINTS	
19. 19	IN ADDITION TO THE MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS. THE FOLLOWING GUIDELINES SHALL BE FOLLOWED FOR INSTALLATION OF	
	ADHESIVE ANCHORS.	

1. ADHESIVE ANCHORS SHALL BE INSTALLED IN CONCRETE HAVING A MINIMUM AGE OF 21 DAYS AT TIME OF ANCHOR INSTALLATION. CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 2,500 PSI AT THE TIME OF INSTALLATION UNLESS HIGHER STRENGTH IS REQUIRED PER THE

- MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS.
- 2. ADHESIVE ANCHORS SHALL BE INSTALLED IN DRY CONCRETE, AND DURING DRY CONDITIONS. 3. ADHESIVE ANCHORS SHALL BE INSTALLED IN HOLES PREDRILLED WITH A CARBIDE TIPPED DRILL BIT.

4. ADHESIVE ANCHORS SHALL BE INSTALLED WITHIN THE TEMPERATURE RANGE SPECIFIED IN THE MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS, BUT NOT OUTSIDE OF THE DESIGN TEMPERATURE RANGE. LOADS SHALL NOT BE APPLIED TO ADHESIVE ANCHORS UNTIL THE FULL CURING TIME ASSOCIATED WITH THE INSTALLATION TEMPERATURE HAS ELAPSED.

20. INSTALLATION OF ADHESIVE ANCHORS SHALL BE PERFORMED BY PERSONNEL CERTIFIED BY AN APPLICABLE CERTIFICATION PROGRAM. CERTIFICATION SHALL INCLUDE WRITTEN AND PERFORMANCE TESTS IN ACCORDANCE WITH THE ACI/CRSI ADHESIVE ANCHOR INSTALLER CERTIFICATION PROGRAM, OR EQUIVALENT.

21. SPECIAL INSPECTIONS SHALL BE PROVIDED FOR POST-INSTALLED ANCHORS IN ACCORDANCE WITH THE ANCHOR MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS AND/OR EVALUATION REPORTS, UNLESS MORE SPECIFIC REQUIREMENTS ARE SPECIFIED IN THE CONSTRUCTION DOCUMENTS. 22. CONTINUOUS INSPECTION SHALL BE PROVIDED FOR ADHESIVE ANCHORS INSTALLED IN HORIZONTAL OR UPWARDLY INCLINED ORIENTATIONS TO RESIST SUSTAINED TENSILE LOADS.

23. HOLE DRILLING AND INSTALLATION OF ADHESIVE ANCHORS SHALL BE IN ACCORDANCE WITH MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS. ANCHORS SHALL BE INSTALLED IN CONCRETE DRY CONDITION.

	ABBREVIATIONS		ABBREVIATIONS		ABBREVIATIONS		ABBREVIATIONS
	ΔΠΟΝΔΙ	FΔ	ΕΔΩΗ	к		PΔF	
-		FF		KIF		PERP	
		E.I		KSF		PI	ΡΙΔΤΕ
		FI	ELEVATION	KSI			
nx		EMB	EMBED	Kor		PREFAR	
I		FOS	EDGE-OE-SLAB	1	LENGTH	PSF	
•	ALLOWABLE STRESS DESIGN	FO	FOUAL		POUND(S)	PSI	POUNDS PER SOUARE INCH
		FW	FACH WAY			PT	POST-TENSIONED
	ΒΟΤΤΟΜ ΟΕ	FXIST	FXISTING	 11H			
1	BUII DING	FXP	FXPANSION			RFF	BEEEBENCE
i	BLOCKING	EXT	EXTERIOR	LRFD	LOAD RESISTANCE FACTORED	REINE	REINFORCE(D) (ING) OR (MENT)
	BASE PLATE				DESIGN	REO(D)	REOUIRE(D)
	воттом	F/F	FACE-TO-FACE	LSH	LONG SIDE HORIZONTAL	REV	REVISION
N	BETWEEN	, FF	FINISH FLOOR	LSV	LONG SIDE VERTICAL	RTU	ROOF TOP UNIT
		FND	FOUNDATION	LTS	LAP TENSION SPLICE		
	COMPRESSION	FS	FAR SIDE	LWC	LIGHT WEIGHT CONCRETE	SCHED	SCHEDULE(D)
	COLD-FORMED STEEL	FT	FEET			SF	SQUARE FOOT (FEET)
	CAST-IN-PLACE	FTG	FOOTING	Μ	MOMENT	SIM	SIMILAR
	CENTER LINE			MAX	MAXIMUM	SMS	SHEET METAL SCREW
	CLEAR OR CLEARANCE	GA	GAGE, GAUGE	MC	MOMENT CONNECTION(S)	SOG	SLAB-ON-GROUND
	CONCRETE MASONRY UNIT	GALV	GALVANIZED	MEP	MECHANICAL, ELECTRICAL,	SPEC(S)	SPECIFICATION(S)
	COLUMN	GB	GRADE BEAM		PLUMBING, FIRE PROTECTION	SS	STAINLESS STEEL
)	CONCRETE	GC	GENERAL CONTRACTOR	MFR	MANUFACTURER	STD	STANDARD
I(S)	CONNECTION(S)			MID	MIDDLE	STIFF	STIFFENER
ВТ	CONSTRUCTION	HCA	HEADED CONCRETE ANCHORS	MIN	MINIMUM	SYM	SYMMETRICAL
-	CONTINUOUS	HORIZ	HORIZONTAL				
RD	COORDINATE	HSS	HOLLOW STRUCTURAL SECTION	NIC	NOT IN CONTRACT	Т	TENSION
				NS	NEAR SIDE	T&B	TOP AND BOTTOM
	DRILL & EPOXY	ID	INSIDE DIAMETER	NTS	NOT TO SCALE	T/	TOP OF
	REINFORCING BAR DIAMETER	IF	INSIDE FACE	NWC	NORMAL WEIGHT CONCRETE	TYP	TYPICAL
	DEGREE(S)	IN	INCH				
	DIAMETER	INFO	INFORMATION	OC	ON CENTER	UNO	UNLESS NOTED OTHERWISE
	DIAGONAL	INT	INTERIOR	OD			
S)	DIMENSION(S)			OF	OUTSIDE FACE	V	SHEAR
	DEAD LOAD	JST(S)	JOIST(S)	OPNG(S)	OPENING(S)	VERT	VERTICAL
(S)	DRAWING(S)			OPP	OPPOSITE	VIF	VERIFY IN FIELD

WITH WITHOUT WWR WELDED WIRE REINFORCEMENT

W/

W/O

3/8" = 1'-0"

NOTES:

1. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS.

ROOF FRAMING PLAN

3/8" = 1'-0"

- NOTES: 1. DENOTES SUPER GUTTER STRAP.
- 2. DENOTES (2) K BOLTS
- CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS
 ZONES 1-4 DENOTE **R-BLADE AZENCO** PRODUCT.

	1153 TOWN CENTER DRIVE #201 JUPITER, FL 33458 (561) - 951 - 0099 AM-STRUCTURES.COM
	AZENCO
	PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED. ALL ITEMS AND ELEMENTS SHOWN ARE TO THE BEST OF THE ENGINEER'S KNOWLEDGE COMPLY WITH THE APPLICABLE BUILDING CODES AND MATERIAL SPECIFICATIONS. OWNERSHIP AND USE OF THESE DOCUMENTS AND SPECIFICATIONS SHALL REMAIN THE PROPERTY OF AM STRUCTURES AND SHALL NOT BE USED BY THE OWNER OR OTHERS ON OTHER PROJECTS WITHOUT WRITTEN APPROVAL BY AM STRUCTURES.
	ENGINEER'S SEAL
	THIS ITEM HAS BEEN DIGITALLY SIGNED AND SEALED BY ANDREW MCCANN, PE, ON 07/19/2024. PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFIED ON ANY ELECTRONIC COPIES.
(TYP)	N WINDOW MENTS, INC. OND TATKO ill Rd, Hudson, OH 44236
	TIMA TREAT RAYM ^{1751 E Hines H}
	ISSUANCE SCHEDULE NO. DESCRIPTION DATE O. INITIAL ISSUANCE 07/19/2024
	ROOF FRAMING PLAN
	PROJECT # 24577 DATE 07/19/2024 DWN BZ
	CHK AEM
	SCALE: AS INDICATED

REFLECTED CEILING PLAN 3/8" = 1'-0"

FRONT ELEVATION 3/8" = 1'-0"

PERIMETER BEAM (SEE PLAN) –

| ∈ \ - 2 1/4" 0"

SIDE ELEVATION

EXIST CONC WALL (BY OTHERS)

EXIST DOOR

STRUCTURAL CONNECTORS

D

B

6" = 1'-0"

3/8" Ø X 3" HEX LAG SCREW SS

3/8" Ø X 5" HEX LAG SCREW SS

MMA .	3/8" Ø X 6" HEX LAG SCREW SS		M12 X 120mm PIN
Mor		Q2	M4.8 X 16mm PAN HEAD TORX BIT SHEET METAL SCREW
ANNE -	5/8 VX0 HEXLAG SCHEW SS	Q3	#14 X 3/4" HEX HEAD SELF-DRILL 316 SS SCF
	1/2" Ø X 6" HEX LAG SCREW SS	Q4	M8 X 40mm PAN HEAD TORX BIT SHEET METAL SCREW
	1/4" Ø X 3" HEX LAG SCREW SS	Q5	HTK10-1.00 HEX SELF-TAPPING 410SS #10 X
	3/8" Ø X 5" HEX SCREW ANCHOR 316 SS	Q6	M8 X 40mm FLAT HEAD TORX BIT SHEET METAL SCREW
	#8 X 1" HWH SDS 410 SS	Q7	M4.8 X 25mm FLAT HEAD TORX BIT SHEET METAL SCREW
		Q12	M8 X 80mm SOCKET CAP HEX HEAD PARTIAL THREADED SCREW
	1/2 0 X 3 DEWALT SUREW BOLT + 310 33	Q13	M8 SS NUT
\bigcirc \bigcirc	RISER KIT: (1) 3/8"-16 Ø X 7" SS HEX CAP BOLT, (2) 3/8" X 7/8" SS FLAT WASHERS, (1) 3/8"-16 Ø SS HEX NUT	Q14	M5.5 X 25mm PAN HEAD SCREW
	1/4" Ø X 4" HWH SDS 410 SS	Q15	M9.5 X 60mm PIN
) $(0)(0)$	1/2" Ø F1554 THREADED ROD W/ DEWALT PURE110+ EPOXY	Q17	1/8"Ø X 3/4" PIN
	#14 X 1" HWH SDS 410 SS	Q18	#14 X 2" SMS SCREW SS410
			1/2" Ø X 2" SS HEX HEAD SCREW

Q22

1/2" Ø SS NUT

Project # 24577

CALCULATION COVER SHEET

Calculations Prepared For:

TIMAN WINDOW TREATMENTS, INC 4533 WILLOW PARKWAY CLEVELAND, OH

Project:

RAYMOND TATKO 1751 E HINES HILL RD HUDSON, OH

Subject:

CANOPY CALCULATIONS

REFERENCE SEALED DRAWING BY BELOW-SIGNED ENGINEER FOR ALL NOTES AND DETAILS INCORPORATED HEREIN

AM STRUCTURES 1153 Town Center Drive #201 Jupiter, FL 33458 PH: 561-951-0099

Project # 24577 - Raymond Tatko										
Timan Window Treatments, Inc Raymond Tatko										
DESIGN CRITERIA:										
Vult =	110 mph									
Exposure:	С									
Ground Snow Load:	20.00 psf									
Live Load:	20.00 psf		Type of project	:	Residential					
Dead Load:	5.0 psf									
Wind Porosity:	50%									
Roof Type:	Louvered									
These are the loads that this calcula	tor will utilize	ə:								
Vult =	110 mph									
Exposure:	C		Deflection criteria:	: L / 180						
Design Live Load:	20.00 pst 20.00 pst									
Design Dead Load:	5.00 psf									
Wind Porosity:	50%									
	20.00 mof									
Critical positive grav comb. (+): Critical negative uplift comb. (-):	- 3 00 psi									
Critical lateral pressure (+):	16.76 psf									
	SY		GURATION:							
Louvers:										
Overall Canopy Length:	55.9 ft									
Overall Canopy Width:	12.7 ft	-								
Rooi Siope: L	LOUVER BI	LADES CLOSED	CHECK 6063-T6							
Sx 2.9166	in^3	Mmax	499.53 lb-ft							
Sy 1.26438	in^3	Stress	7.71 ksi		Stress Check:	85.0%				
Length of Longest Louver Blade:	12 π	8 in			Louver Length:	12.7 π				

AM STRUCTURES 1153 Town Center Drive #201 Jupiter, FL 33458 PH: 561-951-0099

Foundation

]						
	-						
		Р	V	M			
	D	0.509	0.000	0.000]		
	W	0.683	0.680	2.839			
	E	0.015	0.042	0.296			
	Lr	1.222	0.000	0.000			
	S	2.547	0.000	0.000			
Bacaniata d Bolt		Spacing	8 625	in	T	SEE ANCHO	
Baseplate 4-Dolt	in	Spacing. Width	0.020	in	31%		
		width.	10.025		5170	Окау	
Post Insert to Base Plate Connection	n		Qty	4	Anchor Qty	at Connection	
				F Fsu Ats	5148.59 60000.00 0.34 i	lb in^2	Ω = 4
				n	20.00 t	threads/in	
				LE	1.57 i	in	
				Dsmin	0.31 1	in	
				Enmax	0.28 1	IN	
]				Requi	red Tension	8608 lb
					Car	acity Shear:	20594 lb
					Oup		2000110
					Analyzing Be M8x4	eam to Post Inse 0 Machine screv	ert with (4) ws
					42%		
					OI	ĸ	

Wor	k Prepared For:	Timan Window Treatments, Inc							
	Project	24577 - Raymond Tatko							
		DESIGN CR	ITERIA:						
$H = 10.00$ ft Mean Roof Height ΔSCE 7-16									
Θ =	0.0 0	Roof Slope $F= 0.0000$		Exposure:	C C				
	110	mph Wind Velocity (3 Second Cust)	Buil		8				
Vult –	0.95	Directionality Factor	Duin	ung category.	11				
Ka =	0.85	Directionality Factor		0	X				
G =	0.85	Gust Effect Factor		Snow:	Y CO CO C				
Kz =	0.85	Velocity Pressure Coefficient	Grour	id Snow Load:	20.00 pst				
Kzt =	1	Topographic Factor	Desig	In Snow Load:	25.00 pst				
			Des	ign Live Load:	20.00 pst				
			Desig	gn Dead Load:	5.0 psf				
	Wind Flow:	Clear		Wind Porosity:	50%				
L =	55.88	ft, Overall Canopy Length		Method:	ASD				
W =	12.67	ft, Overall Canopy Width	Live Load	Lr:	12.00 psf				
a =	3.00 ft		Reduction Per	Lo:	20.00 psf				
			IBC	R1:	0.6				
			1607.13.2.1	R2:	1				
		LOADS ON COMPONE	NTS & CLADDING:						
		(Roof Decking and De	cking Fasteners)						
11=	12 67	ft Effective Deck Panel Length							
W1 =	4 22 ft	Effective Deck Panel Width							
A =	53 48 ft^2	Effective Wind Area 1 1*W1	A > 4 0*a^2						
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00.10112		<u>/// 1.0 u L</u>						
CNp =	0.6	Positive Pressure Coefficient							
CNn =	-0.5	Negative Pressure Coefficient							
gz =	11.18 psf	Velocity Pressure w/ Porosity							
WIp =	6 71 psf	Positive Wind Load = $az^*G^*CNp$							
WLn =	-5.36 nsf	Negative Wind Load = $az^*G^*CNn$							
VVEII -	-0.00 p3i								
Grav = Uplift =	30.00 psf -3.00 psf	D + (Lr or S or R) 0.6D + 0.7E	Cı Cri	itical positive DP itical negative DP					
		LOADS ON MAIN WIND FOR (Beams, Columns,	CE RESISTING SYS	STEM:					
Wind Direction, y	= 0°		<u>Wind Direction, y</u>	= <u>180°</u>					
CNWa =	1.2	Cnw value, load case A	CNWa =	1.2	Cnw value, load case A				
CNWb =	-1.1	Cnw value, load case B	CNWb =	-1.1	Cnw value, load case B				
CNLa =	0.3	Cnl value, load case A	CNLa =	0.3	Cnl value, load case A				
CNLb =	-0.1	Cnl value, load case B	CNLb =	-0.1	Cnl value, load case B				
Wind Direction, y	= 90°								
CNa =	-0.8	Cn value, load case A	CNb =	0.8	Cn value, load case B				
CNp =	0.6	Critical Desitive Pressure Coefficient							
CNp =	-0.5	Critical Negative Pressure Coefficient							
CINIT -	-0.5	Chical Negative Fressure Coefficient							
WIn=	6 71 psf	Critical Positive Wind Load = gz*G*CNp							
WLn =	-5.36 psf	Critical Negative Wind Load, = gz*G*CNn							
	•								
Grav =	30.00 psf	D + (Lr or S or R)	Ci	itical positive DP					
Uplift =	-3.00 psf	0.6D + 0.7E	Cri	itical negative DP					
LOADS ON CANOPY FASCIA									
GCpn1 =	1.5	Combined Net Pressure Coefficient on wind	ward fascia						
GCpn1 =	-1	Combined Net Pressure Coefficient on leewa	ard fascia						
	40.70	Assessed Mind Land C. Provide Access							
WL =	16.76 pst	Average wind Load on Fascia, qz*GCpn*.	06						

Work Pre	epared For: Timan Window Treatments, Inc Project: 24577 - Raymond Tatko		
Snow Loads	<u>s</u>	w lu2	
Pg =	20 psf, Ground snow load		hc
Ce =	1.0 Exposure factor (Table 7-2)		
Ct =	1.2 Thermal factor (Table 7-3)	+1	
ls =	1.0 Importance factor (Table 7-4)		
Evs =	1.00 ° Eave slope		
S =	57.29 Roof slope run for a rise of one		
W =	15.00 ft, Horizontal distance from eave to	o ridge	
γ =	16.60 pcf Snow density Eq. 7-3: 0.13(Pg)+14	4 < 30 psf	
Cs =	1.00 Slope factor at 1° (Figure 7-2)		
Balanced S	now Loads		
Pf =	20.00 psf Snow load on flat roofs (slope < 5°	'): Pf = max[(I)(Pg),(0.7)(Ce)(Ct)(I)(Pg)]	
Ps =	20.00 psf Sloped roof snow loads (slope > 5	°): Ps = (Cs)(Pf)	
Drifts on Lo	ower Roofs (Aerodynamic Shade)		
lu1=	20.00 ft, Length of upper roof		
lu2=	15.00 ft Length of lower roof projection		
hc=	10.00 ft, Height from top of lower roof to	top of eave	
Drift snow r	required, hc/hb>0.2		
hb=	1.20 ft Height of balanced snow: Ps/( $\gamma$ )		
hd1=	1.23 ft Height of snow drift (Fig 7-9): 0.43	(lu)^(1/3)(Pg+10)^(1/4)-1.5 (Leeward)	
hd2=	0.74 ft Height of snow drift (Fig 7-9): 0.43	(lu)^(1/3)(Pg+10)^(1/4)-1.5 (Windward)	
ASCE 7-	10/7-16 - Rain-On-Snow Surcharge (7.10)	Unreducible Snow Load	Yes
ls Pg	20 PSF or less? YES	Include Uniform Dist. Ice Load?	Yes
	5.00 psf Rain-On-Snow Surcharge	Include surcharge load?	Yes
hd=	1.23 ft Governing drift height		
w=	4.93 ft Governing drift width		
hend=	0.00 ft Drift height at edge of lower roof		
pd=	10.22 psf Surcharge load Uniform Distribution	on Over Drift Width	
	3.36 psf Surcharge Load Distributed over T	ributary Area	
SL=	25.00 psf Unreducible Roof Snow Load		

Work Pre	pared For: Timan Window Treatments,	Inc	
	Project: 24577 - Raymond Tatko		
Ice Load Due to	Freezing Rain (per ASCE 7-16 - Chapt	<u>er 10)</u>	
Acounting for Aco	cumulating Ice on Louver Blades		
_			
t _i =	0.00 Nominal Ice Thickness (in.)	Louver (6" O.C.)	
K _{zt} =	1.0 Topographic Factor	Depth (d) 6.000 in.	
Z =	10.00 ft System Height	Width (bf) 1.866 in.	
I _i =	1.00 Importance Factor	Thickness .065 in.	
I _d =	56.00 Ice Density (56 pct default)	Length 12.67 ft	
	II Occupancy Category		
Per Table 10-1			
t _d =	0.00 in, Design Ice Thickness	$t_d = t_i^* I_i^* f_z^* (K_{zt})^{0.35}$	
W _i =	0.00 psf Weight of Ice (for td)	$W_{i} = (td/12)^{*}I_{d}$	
F _z =	0.8875	$F_z = (Z/33)^{0.1}$	
lea Loading Ch	10.4		
Louver Ice Loadi	2g		
	6.32 in Circumscribing Diameter of L	puver $D = \sqrt{d^2 + bf^2}$	
A _i =	.00 in^2 Area of Ice = $\pi t_d^*(D_c+t_d)$	$D_c = V (1) D_c$	
W _{i(Louver)} =	0.00 plf Uniform Distributed Ice Load	(Single Louver Blade)	
	$W_{i} = (A_{i}/144)^{*}I_{d}$		
Louver Beam Ice	Loading from Louver Blades		
W _{i(Louver)} =	0.00 plf Distributed Ice Load on Louve	er Blade	
L=	12.67 ft Length of Longest Louver Bla	ade	
W _{i(Beam)} =	0.0 plf Calculated Ice Load on Louve	er Beam	
	W _{i(Beam)} = W _{i(Louver)} *Louver Ler	ngth*(1.866"/6")	
	(6" O.C. Louvers In Open Pos	sition)	
Wi _(Louver) =	0.00 plf Uniform Linear Ice Load (Lo	ouver Blade)	
W _{i(Beam)} =	0.00 plf Uniform Linear Ice Load (Lo	ouver Beam)	
	$(W_{i(Beam)}$ doubled for intermediate Louv	/er Beams)	
1			

W	ork Pr	epared For:	Timan Wind	ow Treatments, Inc	;					
	$r_{10} = 0.24377 - r_{ay} = 0.0000 + a_{10}$									
	Seismic Loads Criteria									
S	s =	0.136	Max considered	d response acceleration	for a period of	0.2 s				
S	1 =	0.049	Max response a	acceleration at period o	f1s					
			10.00 %		• • • • •					
He	ight of	Structure =	= 10.00 π		Attached	to host structure?	Y			
Site Class			D							
F	a =	1.6	short period a	mplification factor						
F	, =	2.4	long period ar	mplification factor						
SM	IS =	0.218	modified spectr	al response acceleratio	n at a period of	0.2 s	F _a *S _s			
S	м1 <b>=</b>	0.118	modified spectr	al response acceleratio	n at a period of	1.0 s	$F_v * S_1$			
	Spec	ctral Res	sponse A	cceleration F	Paramete	ers				
S	_s =	0.145	Design spectra	response acceleration	at a period of 0	.2 s	(2/3)*S _{ms}			
S	_{D1} =	0.078	design spectral	response acceleration	at a period of 1	.0 s	(2/3)*S _{M1}			
		Struct	ural Dosi	an Requirem	onte					
Іт	=	0 112					C ₄ *h ₂ ×			
і т	a . =	12.0		nandamentai period (	3)					
	L 	0.402								
	-v- n -	0.102	ventical Sets	Sinic Loaus (PSP)						
	p = n=	2.50								
	ip= lp=	1.000								
	1-									
W	′p=	509.31 lbs		Tributary	/ Weight					
F	p=	29.55 lbs		Seismic De	sign Force	0.4ap*SDS*Wp/	(Rp/lp)*(1+2(z/h))			
FpMA	X=	118.21 lbs	5							
FpMI	N=	22.16 lbs	5			Ω=	2.00			
000.07 "	۲= ۴	1	_			SERVICE =	0.7			
206.87 1	D-II		E	ffective Seismic M	oment		(H*Fp)			
				SDF OK?		OK				

Work Prepared For:	Timan Windo	ow Treatments,	Inc					
Project:	Project: 24577 - Raymond Tatko							
Г								
	Specifi	cations for Al	uminum Str	uctures (Buildi	ings)			
	-	Allowat	ole Stress D	esign				
					_			
Design Check of Azonoo L			ECK > 1/727"/4 0	106" 6063 TE A	luminum Tu	ho		
Per 2020 Aluminum Design	Manual	007 X0.007 X2	.14/2/ /1.0	400 0003-10 4		<u>De</u>		
				Critically				
Allov:	6063	Temper:	T6	Welded:	Ν			
,								
MEMBER PROPERTIES								
					Elange width	0.062"		
				Flan	na thickness	9.903		
				1 Iding	Web beight	0.007		
				10/	web height	2.147		
		Mom	ont of inartia	about axis para		1.04 ip44		
~	-1.96	Ma	mont of inort	about axis para		17.04 III ² 4		
	3		Section r	ia about axis pa		0.79 in 4		
	180.00	18561=	Section r	nodulus compre		0.78 IN*3		
	5 547=7.409	1	Sec	ction modulus te	ension x-axis	1.31 In^3		
			Sec	ction modulus te	ension y-axis	3.16 in^3		
	_		Section r	nodulus compre	ession y-axis	3.95 in^3		
	R	adius of gyratic	on about cen	troidal axis para	illel to flange	0.71 in		
		Radius of gyra	tion about ce	entroidal axis pa	rallel to web	2.92 in		
				Tors	ion constant	1.26 in^4		
			Cros	ss sectional area	a of member	2.04 in^2		
				Plastic sect	ion modulus	1.30 in^3		
Warping constant								
MEMBER SPANS								
	Unsupp	orted member	length (betw	een supports)	L =	12.67 ft		
Unbraced length for bending (between bracing against side-sway) Lb =								
Effective length factor $k =$								
Tensile ultimate strength Ftu =						30 ksi		
Tensile yield strength Fty =						25 ksi		
Compressive yield strength Fcy =						25 ksi		
	Shear ultimate strength Fsu =							
			Shear	yield strength	Fsy =	15 ksi		
	Compressive modulus of elasticity E =							

BUCKLING CONSTANTS				
Compression in columns	& beam flanges (Intercept)	Bc =	27.64 ksi	
Compression in column	ns & beam flanges (Slope)	Dc =	0.14 ksi	
Compression in columns & b	eam flanges (Intersection)	Cc =	78.38 ksi	
Compressi	on in flat plates (Intercept)	Bp =	31.39 ksi	
Compre	ession in flat plates (Slope)	Dp =	0.17 ksi	
Compression	in flat plates (Intersection)	Ср =	73.55 ksi	
Compressive bending stress in solid r	ectangular bars (Intercept)	Bbr =	46.12 ksi	
Compressive bending stress in soli	d rectangular bars (Slope)	Dbr =	0.38 ksi	
Shear stre	ess in flat plates (Intercept)	Bs =	18.98 ksi	
Shears	stress in flat plates (Slope)	Ds =	0.08 ksi	
Shear stress	in flat plates (Intersection)	Cs =	94.57 ksi	
Ultimate strength coefficient of flat plates in compres	sion (slenderness limit $\lambda 2$ )	k1c =	0.35	
Itimate strength coefficient of flat plates in compression (si	tress for slenderness > $\lambda 2$ )	k2c =	2.27	
Ultimate strength of flat plates in ben	ding (slenderness limit $\lambda 2$ )	k1b =	0.50	
Ultimate strength of flat plates in bending (st	tress for slenderness > $\lambda 2$ )	k2b =	2.04	
	Tension coefficient	<i>kt</i> =	1.0	
D 2 Avial Tonsion				
Tensile Vielding - I Inwelded Members		Ety n -	25.00 kai	
Tensile Tielding - Onwelded Members	[רנץ]	Fty_11 =	20.00 KSI 1 65	
		Etv $n/\Omega =$	1.05 15 15 kei	
Tensile Runture - Unwelded Members	[Etu]	$F_{tu} p =$	30.00 ksi	
	្រស្វេ	0 =	1 95	
		$f_{12} = f_{12}$	15 38 kei	
		1 tu_1// 22t =	10.00 K3	
AXIAL COMPRESSION MEMBERS				
E.2 Compression Member Buckling				
Axial, gross section subject to buckling	Lower slenderness limit	$\lambda 1 =$	18.23	
	Upper slenderness limit	λ2 =	78.38	
	Slenderness	λ(max) =	212.97	≥λ2
	[0.85π²Ε/λ²]	Fc_n =	1.87 ksi	
		Ω =	1.65	
		<b>Fc_n</b> /Ω =	1.13 ksi	

#### E.3 Local Buckling

For column elements in uniform compression subject to local buckling, the uniform compressive strength is addressed in Section B.5.4 calculated below.

#### B.5.4.2 - Flat elements supported on both edges (Flange

B.5.4.2 - Flat elements supported on both edges (Web)

#### E.4 Buckling Interaction

E.4 Bucking Interaction					
Per Table B.5.1		[π²*E/ (1.6*b/tb)²]	Fe(flange) =	3.08 ksi	
		[Fc_n]	Fc_n =	1.87 ksi	
	Fe(flange) >	Fc_n (E.2 Member Buckling)	Ω =	1.65	
		[π²*E/ (1.6*h/th)²]	Fe(web) =	75.69 ksi	
		[Fc_n]	Fc_n =	1.87 ksi	
	Fe(web) > Fc_n (E.2 Member Buckling)				
			<b>Fc_n</b> /Ω =	1.13 ksi	
FLEXURAL MEMBERS					
F.2 Yielding and Rupture					
Nominal flexural strength for yielding	and rupture	Limit State of Yielding			
		[Sc*Fcy]	Mnp =	19.43 k-in	
		[Mnp/Sx]	Fb_n =	14.97 ksi	
			Ω =	1.65	
			<b>Fb_n</b> /Ω =	9.07 ksi	
		Limit State of Rupture			
		[Z*Ftu/kt]	Mnu =	38.93 k-in	
		[Mnu/Z]	Fb_n =	30.00 ksi	
			Ω =	1.95	
			$Fb_n/\Omega =$	15.38 ksi	
F.4 Lateral-Torsional Buckling			_		
Unsymmetric shape subject to lateral	I-torsional buckling				
Slende	erness for closed s	hape about the bending axis	λ F.4.2.5 =	11.55	
		Maximum slenderness	λ(max) =	11.55	< Cc
Nominal flexural strength - lateral-tor	sional buckling		( )		
5	[Mnp(	1-(λ/Cc))+(π²*E*λ*Sx/Cc^3)]	Mnmb =	18.42 k-in	
		IMnmb/Sx1	Fbn=	23.71 ksi	
		1	 Ω =	1.65	
			<b>Fb</b> $n/\Omega$ =	14.37 ksi	
UNIFORM COMPRESSION ELEME	NTS				
B.5.4.2 Flat Elements Supported o	n Both Edges - W	eb & Flange			
Uniform compression strength. flat el	ements supported	on both edges			
		Lower slenderness limit	$\lambda 1 =$	22.8	
		Upper slenderness limit	$\lambda 2 =$	39.2	
		Flange Slenderness	b/tb =	112 52	> \2
		Web Slenderness	h/th =	22.68	< λ1
		[k2c*√(Bn*F)/(1.6*h/th)]	Fc n1 =	7 10 kei	- //
			0 =	1 65	
			Ec n1/0 =	1 30 kai	
		(Foul	Ec n2 -	4.00 KOI	
		[ו־כּעַן		20.00 KBI	
			$\Omega =$	15 15 46	
			FC_N2/\] =	15.15 KSI	

#### AM STRUCTURES 1153 Town Center Drive #201 Jupiter, FL 33458 PH: 561-951-0099

FLEXURAL COMPRESSION ELEMENTS	LEXURAL COMPRESSION ELEMENTS									
B.5.5.1 Flat Elements Supported on Bo	3.5.5.1 Flat Elements Supported on Both Edges - Web									
Flexural compression strength, flat elemen	nts supported c	n both edges								
	Lower slenderness limit									
	Upper slenderness limit									
	h/th =	22.68	≤ λ1							
		[1.5*Fcy]	Fb_n =	37.50 ksi						
			Ω =	1.65						
			$Fb_n/\Omega =$	22.73 ksi						
SHEAR										
G.2 Shear Supported on Both Edges - V	<u>Veb</u>									
Members with flat elements supported on	both edges	Lower slenderness limit	$\lambda 1 =$	38.73						
		Upper slenderness limit	$\lambda 2 =$	75.65						
		Slenderness	h/th =	22.68	≤ λ1					
		[Fsy]	Fv_n =	15.00 ksi						
			Ω =	1.65						
			<b>Fv_n</b> /Ω =	9.09 ksi						
ALLOWABLE STRESSES	<b></b>									
		Allowable bending stress	+b =	9.07 ksi						
	Allowabl	e axial stress, compression	Fac =	1.13 KSI						
	AI	Iowable shear stress; webs	Fv =	9.09 ksi						
		Elastic buckling stress	Fe =	1.13 ksi						
Weighted average allowat	Fao =	6.12 ksi								
Mmax	499.53	lb-ft								
Stress	7.71	ksi								
Fb	9.07 ksi			85.032%						

Work Prepared For: Timan Window Treatments, Inc										
Project:	ct: 24577 - Raymond Tatko									
Detail/Member:	Louver Beam									
			MANULAL (2020							
	<u>AL</u> Sneci:	fications for Alum	INANUAL (2020	<u>se (Building</u>	(e)					
	opeci.	13)								
	¥									
Design Check of 5.75"x1	4.125"x0.125"/0.125"	6005A-T6 Alumin	<u>um Tube</u>							
Per 2020 Aluminum Desigi	n Manual									
		_		Critically						
Alloy:	6005A	l emper:	16	Welded:	N					
5.34			Flan	ae width	b =	5 750"				
			Flange t	hickness	$\tilde{tb} =$	0.125"				
			Ŵe	eb height	h =	14.125"				
			Web ti	hickness	<i>th</i> =	0.125"				
	Mo	oment of inertia abo	out axis parallel	to flange	<i>lx</i> =	80.77 in^4				
	r	Noment of inertia al	bout axis paralle	el to web	<i>ly</i> =	17.42 in^4				
784		Section mod	uius compression	on x-axis	Sxc =	8.94 in^3				
2, 3/4 ⁴		Section	n modulus tensio	on v-axis	Sxl = Svt =	15.00 III''5 4 34 in^3				
		Section mod	ulus compressio	on v-axis	Svc =	10 03 in^3				
3/4*	Radius of gyra	ation about centroid	al axis parallel	to flange	rx =	4.36 in				
	Radius of g	yration about centro	oidal axis paralle	el to web	ry =	2.02 in				
the state of the s			Torsion	constant	<i>J</i> =	1.90 in^4				
+		Cross se	ectional area of	member	A =	4.25 in^2				
			Plastic section	modulus	Z =	16.60 in^3				
			vvarping	constant	Cw =	5.75 in/6				
MEMBER SPANS										
	Unsu	pported member ler	nath (between s	upports)	L =	17.04 ft				
l	Unbraced length for be	nding (between bra	acing against sid	de-sway)	 Lb =	17.04 ft				
			Effective leng	th factor	<i>k</i> =	1.0				
MATERIAL PROPERTIES	;	-	T		-					
		I	Topsile viold	strength	Ftu =	38 KSI 25 koj				
		Co	mpressive vield	strength	Fly = Ecv =	35 ksi				
			Shear ultimate	strength	Fsu =	23 ksi				
			Shear yield	strength	Fsy =	21 ksi				
		Compress	sive modulus of	elasticity	E =	10,100 ksi				
BUCKLING CONSTANTS	Compres	aion in columno 9 k	haam flanges (h	atoroopt)	Da -	20.07 ka				
	Comples	ression in columns & r	& beam flances	(Slope)	BC =	39.37 KSI 0.25 ksi				
	Compressio	n in columns & bea	am flanges (Inte	rsection)	DC = Cc =	65.67 ksi				
	p. 00010	Compression	n in flat plates (li	ntercept)	Bp =	45.00 ksi				
		Compress	sion in flat plates	s (Slope)	Dp =	0.30 ksi				
	_	Compression in	flat plates (Inte	rsection)	Cp =	61.42 ksi				
	Compressive bending	g stress in solid rec	tangular bars (lı	ntercept)	Bbr =	66.82 ksi				
	Compressive bend	aing stress in solid i	rectangular bars	s (Slope)	Dbr =	0.67 ksi				
		Shear stress	s in hat plates (li	(Slope)	Bs =	27.24 KSI				
		Shear stress in	flat plates (Inte	rsection)	DS = Cs =	78 95 kei				
Ultimate strer	ngth coefficient of flat r	plates in compression	on (slenderness	limit $\lambda 2$	k1c =	0.35				
Ultimate strength coe	efficient of flat plates in	compression (stre	ss for slenderne	ess > λ2)́	k2c =	2.27				
_	Ultimate strength of	flat plates in bendir	ng (slenderness	limit λ2)	k1b =	0.50				
Ultim	ate strength of flat plat	tes in bending (stre	ss for slenderne	ess > λ2)	k2b =	2.04				
			Tension co	pefficient	<i>kt</i> =	1.0				
D 2 Avial Tension										
Tensile Yielding - Unwelde	d Members			[Etv]	Ftv n =	35 00 kei				
- choice riolaing - chivelde				ני יז	Ω =	1.65				
					 Fty_n/Ω =	21.21 ksi				
Tensile Rupture - Unwelde	d Members			[Ftu/kt]	$Ftu_n =$	38.00 ksi				
					Ω =	1.95				
					Ftu_n/Ωt =	19.49 ksi				

#### AM STRUCTURES 1153 Town Center Drive #201 Jupiter, FL 33458 PH: 561-951-0099

AXIAL COMPRESSION MEMBERS				
E.2 Compression Member Buckling				
Axial, gross section subject to buckling	Lower slenderness limit	$\lambda 1 =$	17.76	
	Upper slenderness limit	λ2 =	65.67	
	Slenderness	$\lambda(max) =$	101.03	≥ λ2
	[0.85π²Ε/λ²]	Fc_n =	8.30 ksi	
		Ω =	1.65	
		Fc_n/Ω =	5.03 ksi	
E.3 Local Buckling				
For column elements in uniform compression subject to l compressive strength is addressed in Section B.5.4 calc	ocal buckling, the uniform ulated below.			
B.5.4.2 - Flat elements supported on both edges (Flange B.5.4.2 - Flat elements supported on both edges (Web)	)			
E 4 Buckling Interaction				
E. + Bucking Interaction Per Table B 5 1	[π ² *Ε/ /1 6*h/łh)21	Fe(flance) =	20 11 kei	
		$F_{C} n =$	8 30 ksi	
Fe/flar	nge) > Fc n (E.2 Member Buckling)	Ω =	1.65	
	.g_,g (	Fc $n/\Omega$ =	5.03 ksi	
	[π²*F/ (1 6*h/th)²]	Fe(web) =	3 16 ksi	
	[0.85π²E/λ(max)²]^1/3 * [Fe^2/3]	Fc n =	4.36 ksi	
Fe(w	reb) < Fc_n (E.2 Member Buckling)	Ω =	1.65	
	, <u> </u>	<b>Fc_n</b> /Ω =	2.64 ksi	
F.2 Yielding and Rupture				
Nominal flexural strength for yielding and rupture	Limit State of Yielding			
	[1.5*Sc*Fcy]	Mnp =	312.73 k-in	
	[Mnp/Sx]	Fb_n =	35.00 ksi	
		Ω =	1.65	
		Fb_n/() =	21.21 ksi	
	Limit State of Rupture		000 00 L ·	
	[Z~Ftu/Kt]	Mnu =	839.60 k-in	
	[Minu/2]	Fb_n =	38.00 KSI	
		$\Omega =$	1.95 10.40 kei	
		10_10.17	10. <del>4</del> 0 KSI	
F.4 Lateral-Torsional Buckling				
Slenderness for shape	s any shape about the bending axis	λ F.4.2.5 =	44.83	
	Maximum slenderness	$\lambda(max) =$	44.83	< Cc
Nominal flexural strength - lateral-torsional buckling		-		
	$[Mnp(1-(\lambda/Cc))+(\pi^{2*}E^*\lambda^*Sx/Cc^3)]$	Mnmb =	240.22 k-in	
	[Mnmb/Sx]	Fb_n =	26.88 ksi	
		$\Omega =$	1.65	
		FD_n/\] =	16.29 ksi	
UNIFORM COMPRESSION ELEMENTS				
B.5.4.2 Flat Elements Supported on Both Edges - We	b & Flange			
onnorm compression strength, tiat elements supported c	n pour eages	<u>لا ا</u>	20.0	
	Lower stenderness limit	Λ1 = λ2 =	∠∪.ŏ 20.8	
	Flance Slenderness	h/th =	32.0 44 0	> 22
	Web Slenderness	h/th =	111 0	<u>−</u> ∧∠ ≥ λ2
	$[k2c^*\sqrt{(Bc^*E)/(1.6^*b/tb)}]$	Fc n1 =	21.74 ksi	- 1/2
		Ω =	1.65	
		$Fc_n1/\Omega =$	13.17 ksi	
	[k2c*√(Bp*E)/(1.6*h/th)]	 Fcn2 =	8.62 ksi	
	· · · · /·	_ Ω =	1.65	
		Fc_n2/Ω =	5.22 ksi	

	•					
B.5.5.1 Flat Elements Supported on Bo	oth Edges - Web					
Flexural compression strength, flat eleme	ents supported on	both edges				
		Lower slen	derness limit	$\lambda 1 =$	33.10	
		Upper slen	derness limit	λ2 =	77.22	
			Slenderness	h/th =	111.00	≥ λ2
		[k2b^SQR1(Bbr	°E)/(m^h/th)]	Fb_n =	23.23 KSI	
				Ω =	1.65	
				Fb_n/\] =	14.08 KSI	
SHEAR	14/a h					
G.2 Snear Supported on Both Edges -	<u>vveb</u>	l ower elen	dornood limit	14 -	25.00	
members with hat elements supported of	i boli i euges	Lower sien	derness limit	A7 =	55.29 62.16	
		Opper sien	Slenderness	//2 = b/th =	111.00	> 22
		[π²Ε/	(1 25*h/th)21	Ev n =	5 18 ksi	= 72
		[11 ]	(1.20 1	0 =	1 65	
				$F_{V} n/\Omega =$	3 1/ kei	
				I V_II/12 -	J. 14 KSI	
ALLOWABLE STRESSES						
	<b></b>					
		Allowable be	onding stress	Eb =	16 20 kei	
	ΔΙΙσ	wable axial stress	compression	Fac =	3 32 kei	
	7 uic	Allowable shear	stress: webs	Fv =	3 14 ksi	
		, montable enfour			0.111.00	
		Elastic bu	ckling stress	Fe =	5.01 ksi	
Weighted average	e allowable compr	essive stress (per S	ection E.3.1)	Fao =	7.48 ksi	
5 5		ŭ	- /			
MEMBER LOADING						
Bending Moments						
	Bendin	g moment develope	d in member	Mz =	6.9 kip-ft	
	Benc	ling stress develope	d in member	fb =	9.26 ksi	
	Allo	wable bending stres	s of member	Fb =	16.29 ksi	< 1.0
Axial Loads				-	0.15	
		Axial load develope	d in member	+x =	0 lb	
	Allewskie see	xial stress develope	a in member	ta =	0.00 ksi	. 1 0
	Allowable con	ipressive axial stres	s of member	Fac =	3.32 KSI	< 1.0
Shear Loads						
Onear Loads	ç	Shear load develope	d in member	$\sqrt{z} =$	1 610 lb	
	Sh	ear stress develope	d in member	fv =	0.47 ksi	
	Allowab	le shear stress of m	ember webs	Fv =	3 14 ksi	< 1.0
	,				0.111.00	1.0
Interaction Equations						
			√ [(fb/F	b)^2 + (fv/Fv)^2] =	0.59	< 1.0
		Eq H.1-1		fa/Fa + fb/Fb =	0.00	< 1.0
		Eq H.3-2	fa/Fa + (fb/l	Fb)^2 + (fv/Fv)^2 =	0.00	< 1.0
CONFIGURATION AND MOMENT TAB	ULATION TOOLS			_		
		S	upport Type	Beam =	Simple	
# of beam= 1		E	seam Length	L =	17.04 ft	
	,	Frit Tributtore (1.1.1.1	outary Width	W =	6.33 ft	
	Loa Additional Dates	id on Tributary (LL,	vvL, DL, etc)	RL =	30.00 psf	
	Additional Beam		ivice Loads)	DL =	0.00 lb/ft	
		Shear Loading of	Ing on Beam	w =	190.00 ID/IT	
				vy = Mmax =	6 Q kin ft	
Deflection Check		JALUULAIE		willax =	0.9 KIP-IL	
Demotion oncon				Sunnort =	Simple	
				Deflection Limit =	L / 180	
				w =	190.00 lb/ft	
		ALLOWABLE DI	EFLECTION	∆Allow =	1.14 in	
		MAXIMUM DI	EFLECTION	∆Max =	0.44 in	39%
			Si	mple Max Deflection	n = 5wl^4/384El	
			OK	K, Allowable Deflect	tion Sufficient	

AM STRUCTURES 1153 Town Center Drive #201 Jupiter, FL 33458 PH: 561-951-0099
Work Prepared For:	Timan Window Trea	atments, Inc					
Project:	24577 - Raymond T	atko					
Detail/Member:	Main Beam						
г			MANULAL (20				
	<u>ALI</u> Sneci	fications for Alum	MANUAL (20	<u>20 EDITION)</u> res (Building	ie)		
	opeen	Allowable	Stress Desic	inco (Building in	5/		
L				,			
Design Check of 5.75"x14	1.125"x0.125"/0.125"	6005A-T6 Alumin	um Tube				
Per 2020 Aluminum Design	Manual						
				Critically			
Alloy:	6005A	Temper:	T6	Welded:	N		
			Fl	ange width	h =	5 750"	
5.3/4			Flange	thickness	tb =	0.125"	
			Ň	Veb height	h =	14.125"	
			Web	thickness	<i>th</i> =	0.125"	
	Mc	oment of inertia abo	ut axis paralle	el to flange	/x =	80.77 in^4	
	N	Moment of inertia a	bout axis para	allel to web	<i>ly</i> =	17.42 in^4	
-B/		Section mod	ulus compres	sion x-axis	Sxc =	8.94 in^3	
² , <u>3</u> , <u>3</u> , <u>4</u> , <u>−</u>		Section	nodulus ten	sion v-axis	Sxt =	15.88 III'3 4 34 in^3	
		Section mod	ulus compres	sion v-axis	Syr =	10 03 in^3	
3/4	Radius of avra	ation about centroid	al axis paralle	el to flange	rx =	4.36 in	
<u>وا</u>	Radius of g	yration about centro	bidal axis para	allel to web	ry =	2.02 in	
			Torsio	n constant	J =	1.90 in^4	
+		Cross s	ectional area	of member	A =	4.25 in^2	
			Plastic sectio	n modulus	Z =	16.60 in^3	
			Warpin	g constant	Cw =	5.75 in^6	
MEMBER SPANS							
	Unsu	oported member le	nath (betweer	supports)	/ =	12 67 ft	
L	Inbraced length for be	nding (between bra	acing against	side-sway)	 Lb =	12.67 ft	
	C C	U (	Effective le	ngth factor	k =	1.0	
MATERIAL PROPERTIES		_					
			l ensile ultima	te strength	Ftu =	38 ksi	
		Co	n ensile yle moressive vie	ld strength	Fty =	35 KSI 35 ksi	
		00	Shear ultimat	te strenath	Fsu =	23 ksi	
			Shear yie	ld strength	Fsy =	21 ksi	
		Compress	ive modulus o	of elasticity	Ē =	10,100 ksi	
BUCKLING CONSTANTS					_		
	Compres	sion in columns & I	beam flanges	(Intercept)	Bc =	39.37 ksi	
	Compressic	n in columns & bes	& Dearn nang	tersection)	Dc =	0.25 KSI 65 67 ksi	
	Compressio	Compression	in flat plates	(Intercent)	8n =	45 00 ksi	
		Compress	sion in flat plat	es (Slope)	ם מD = מD	0.30 ksi	
		Compression in	flat plates (In	tersection)	 Cp =	61.42 ksi	
	Compressive bending	g stress in solid rec	tangular bars	(Intercept)	Bbr =	66.82 ksi	
	Compressive bence	ding stress in solid	rectangular ba	ars (Slope)	Dbr =	0.67 ksi	
		Shear stress	in flat plates	(Intercept)	Bs =	27.24 ksi	
		Shear str	ess in flat plat	es (Slope)	Ds =	0.14 ksi	
l Iltimate stren	ath coefficient of flat r	lates in compressi	nai piaies (IN on (slenderne	ss limit $\lambda 2$	cs = k1c - cs	10.90 KSI 0.25	
Ultimate strength coe	fficient of flat plates in	compression (stre	ss for slender	ness > $\lambda 2$ )	$k^{2}c =$	2 27	
	Ultimate strength of	flat plates in bendi	ng (slenderne	ss limit λ2)	k1b =	0.50	
Ultima	ate strength of flat plat	es in bending (stre	ss for slender	ness > λ2)́	k2b =	2.04	
			Tension	coefficient	<i>kt</i> =	1.0	
D.2 Axial Tension	d Manakana					05 00 1	
rensile rielaing - Unwelde	J Wembers			[Hty]	⊢ty_n =	35.00 KSI	
					Ω= Ftvn/Ω=	1.05 21.21 kei	
Tensile Rupture - Unwelde	d Members			[Ftu/kt]	Ftu n =	38.00 ksi	
				[	Ω =	1.95	
					Ftu_n/Ωt =	19.49 ksi	

AXIAL COMPRESSION MEMBERS				
E.2 Compression Member Buckling				
Axial, gross section subject to buckling	Lower slenderness limit	$\lambda 1 =$	17.76	
	Upper slenderness limit	$\lambda 2 =$	65.67	
		$\lambda(max) =$	75.09	≥ λ2
	[0.85#*E/٨*]	rc_n =	15.03 KSI 1 65	
		$\Omega =$	0.11 kai	
		FC_1//12 -	9.11 KSI	
E.3 Local Buckling				
For column elements in uniform compression subject to local	buckling, the uniform			
compressive strength is addressed in Section B.5.4 calculate	d below.			
B.5.4.2 - Flat elements supported on both edges (Flange)				
B.5.4.2 - Flat elements supported on both edges (Web)				
E.4 Buckling Interaction				
Per Table B.5.1	[π²*E/ (1.6*b/tb)²]	Fe(flange) =	20.11 ksi	
	[Fc_n]	Fc_n =	15.03 ksi	
Fe(flange)	Fc_n (E.2 Member Buckling)	Ω =	1.65	
		<b>Fc_n</b> /Ω =	9.11 ksi	
	[π²*E/ (1.6*h/th)²]	Fe(web) =	3.16 ksi	
[0.	85π²E/λ(max)²]^1/3 * [Fe^2/3]	Fc_n =	5.31 ksi	
Fe(web) <	< Fc_n (E.2 Member Buckling)	Ω =	1.65	
		<b>Fc_n</b> /Ω =	3.22 ksi	
FLEAURAL MEMBERS				
Nominal flexural strength for vielding and rupture	Limit State of Yielding			
5,51	[1.5*Sc*Fcy]	Mnp =	312.73 k-in	
	[Mnp/Sx]	Fb_n =	35.00 ksi	
		Ω =	1.65	
		$Fb_n/\Omega =$	21.21 ksi	
	Limit State of Rupture			
	[Z*Ftu/kt]	Mnu =	839.60 k-in	
	[Mnu/2]	Fb_n =	38.00 ksi	
		$\Omega =$	1.95 10.40 kai	
		FD_11/12 -	19.49 KSI	
F.4 Lateral-Torsional Buckling				
Insymmetric shape subject to lateral-torsional buckling				
Slenderness for shapes any				
	shape about the bending axis	λ F.4.2.5 =	40.04	
	Shape about the bending axis Maximum slenderness	λ F.4.2.5 = λ(max) =	40.04 40.04	< Cc
Nominal flexural strength - lateral-torsional buckling	shape about the bending axis Maximum slenderness	$\lambda F.4.2.5 = \lambda(max) = Mnmb = $	40.04 40.04 247 98 k-in	< Cc
Nominal flexural strength - lateral-torsional buckling [Mn	shape about the bending axis Maximum slenderness p(1-(λ/Cc))+(π ^{2*} E*λ*Sx/Cc^3)] [Mnmb/Sx]	$\lambda$ F.4.2.5 = $\lambda(max)$ = Mnmb = Fb n =	40.04 40.04 247.98 k-in 27.75 ksi	< Cc
Nominal flexural strength - lateral-torsional buckling [Mn	shape about the bending axis Maximum slenderness p(1-(λ/Cc))+(π ^{2*} E*λ*Sx/Cc^3)] [Mnmb/Sx]	λ F.4.2.5 = λ(max) = Mnmb = Fb_n = Ω =	40.04 40.04 247.98 k-in 27.75 ksi 1.65	< Cc
Nominal flexural strength - lateral-torsional buckling [Mn	shape about the bending axis Maximum slenderness p(1-(λ/Cc))+(π ^{2*} E*λ*Sx/Cc^3)] [Mnmb/Sx]	$\lambda F.4.2.5 = \lambda(max) = Mnmb = Fb_n = \Omega = Fb_n/\Omega $	40.04 40.04 247.98 k-in 27.75 ksi 1.65 16.82 ksi	< Cc
Nominal flexural strength - lateral-torsional buckling [Mn	shape about the bending axis Maximum slenderness p(1-(λ/Cc))+(π ^{2*} E*λ*Sx/Cc^3)] [Mnmb/Sx]	$\lambda F.4.2.5 = \lambda(max) = Mnmb = Fb_n = \Omega = Fb_n/\Omega $	40.04 40.04 247.98 k-in 27.75 ksi 1.65 16.82 ksi	< Cc
Nominal flexural strength - lateral-torsional buckling [Mn, JNIFORM COMPRESSION ELEMENTS	shape about the bending axis Maximum slenderness p(1-(λ/Cc))+(π ² *E*λ*Sx/Cc^3)] [Mnmb/Sx]	$\lambda F.4.2.5 = \lambda(max) = \lambda(max) = 0$ Mnmb = Fb_n = $\Omega = 0$ Fb_n/ $\Omega = 0$	40.04 40.04 247.98 k-in 27.75 ksi 1.65 16.82 ksi	< Cc
Vominal flexural strength - lateral-torsional buckling [Mn, JNIFORM COMPRESSION ELEMENTS 3.5.4.2 Flat Elements Supported on Both Edges - Web & Juiform compression strength flat elements supported on bo	shape about the bending axis Maximum slenderness b(1-(λ/Cc))+(π ^{2*} E*λ*Sx/Cc^3)] [Mnmb/Sx] E <u>lange</u> th edges	$\lambda F.4.2.5 = \lambda(max) = \lambda(max) = 0$ Mnmb = Fb_n = $\Omega = 0$ Fb_n/ $\Omega = 0$	40.04 40.04 247.98 k-in 27.75 ksi 1.65 16.82 ksi	< Cc
Vominal flexural strength - lateral-torsional buckling [Mn, JNIFORM COMPRESSION ELEMENTS 3.5.4.2 Flat Elements Supported on Both Edges - Web & J Jniform compression strength, flat elements supported on bo	shape about the bending axis Maximum slenderness b(1-(λ/Cc))+(π ^{2*} E*λ*Sx/Cc^3)] [Mnmb/Sx] Flange th edges Lower slenderness limit	$\lambda F.4.2.5 = \lambda(max) =$ $Mnmb =$ $Fb_n = \Omega =$ $Fb_n/\Omega =$ $\lambda t =$	40.04 40.04 247.98 k-in 27.75 ksi 1.65 16.82 ksi 20.8	< Cc
Vominal flexural strength - lateral-torsional buckling [Mn, JNIFORM COMPRESSION ELEMENTS 3.5.4.2 Flat Elements Supported on Both Edges - Web & J Jniform compression strength, flat elements supported on bo	shape about the bending axis Maximum slenderness b(1-(N/Cc))+(π ^{2*} E*λ*Sx/Cc^3)] [Mnmb/Sx] Elange th edges Lower slenderness limit Upper slenderness limit	$\lambda F.4.2.5 = \lambda(max) =$ $Mnmb =$ $Fb_n = \Omega =$ $Fb_n/\Omega =$ $\lambda 1 = \lambda 2 =$	40.04 40.04 247.98 k-in 27.75 ksi 1.65 16.82 ksi 20.8 32.8	< Cc
Vominal flexural strength - lateral-torsional buckling [Mn, JNIFORM COMPRESSION ELEMENTS 3.5.4.2 Flat Elements Supported on Both Edges - Web & J Jniform compression strength, flat elements supported on bo	shape about the bending axis Maximum slenderness b(1-(N/Cc))+(π ^{2*} E*λ*Sx/Cc^3)] [Mnmb/Sx] Elange th edges Lower slenderness limit Upper slenderness limit Flange Slenderness	$\lambda F.4.2.5 = \lambda(max) =$ $Mnmb =$ $Fb_n = \Omega =$ $Fb_n/\Omega =$ $\lambda 1 =$ $\lambda 2 =$ $b/tb =$	40.04 40.04 247.98 k-in 27.75 ksi 1.65 16.82 ksi 20.8 32.8 44.0	< Cc ≥ λ2
Vominal flexural strength - lateral-torsional buckling [Mn, JNIFORM COMPRESSION ELEMENTS 3.5.4.2 Flat Elements Supported on Both Edges - Web & J Jniform compression strength, flat elements supported on bo	shape about the bending axis Maximum slenderness b(1-(N/Cc))+(π ^{2*} E*λ*Sx/Cc^3)] [Mnmb/Sx] Flange th edges Lower slenderness limit Upper slenderness limit Flange Slenderness Web Slenderness	$\lambda F.4.2.5 = \lambda(max) =$ $Mnmb =$ $Fb_n = \Omega =$ $Fb_n/\Omega =$ $\lambda 1 =$ $\lambda 2 =$ $b/tb =$ $h/th =$	40.04 40.04 247.98 k-in 27.75 ksi 1.65 16.82 ksi 20.8 32.8 44.0 111.0	< Cc ≥ λ2 ≥ λ2
Vominal flexural strength - lateral-torsional buckling [Mn, JNIFORM COMPRESSION ELEMENTS 3.5.4.2 Flat Elements Supported on Both Edges - Web & J Jniform compression strength, flat elements supported on bo	shape about the bending axis Maximum slenderness $p(1-(\lambda/Cc))+(\pi^{2*}E^*\lambda^*Sx/Cc^*3)]$ [Mnmb/Sx] Flange th edges Lower slenderness limit Upper slenderness limit Flange Slenderness Web Slenderness [k2c*\(Bp*E)/(1.6*b/tb)]	$\lambda F.4.2.5 = \lambda(max) =$ $Mnmb =$ $Fb_n = \Omega =$ $Fb_n/\Omega =$ $\lambda 1 =$ $\lambda 2 =$ $b/tb =$ $h/th =$ $Fc_n1 =$	40.04 40.04 247.98 k-in 27.75 ksi 1.65 16.82 ksi 20.8 32.8 44.0 111.0 21.74 ksi	< Cc ≥ λ2 ≥ λ2
Nominal flexural strength - lateral-torsional buckling [Mn, JNIFORM COMPRESSION ELEMENTS 3.5.4.2 Flat Elements Supported on Both Edges - Web & ] Jniform compression strength, flat elements supported on bo	shape about the bending axis Maximum slenderness $p(1-(\lambda/Cc))+(\pi^{2*}E^*\lambda^*Sx/Cc^3)]$ [Mnmb/Sx] Flange th edges Lower slenderness limit Upper slenderness limit Flange Slenderness Web Slenderness [k2c*\(Bp*E)/(1.6*b/tb)]	$\lambda F.4.2.5 = \lambda(max) =$ $Mnmb =$ $Fb_n = \Omega =$ $Fb_n/\Omega =$ $k1 = \lambda 2 =$ $b/tb =$ $h/th =$ $Fc_n1 =$ $\Omega =$	40.04 40.04 247.98 k-in 27.75 ksi 1.65 16.82 ksi 20.8 32.8 44.0 111.0 21.74 ksi 1.65	< Cc ≥ λ2 ≥ λ2
Nominal flexural strength - lateral-torsional buckling [Mn, JNIFORM COMPRESSION ELEMENTS 3.5.4.2 Flat Elements Supported on Both Edges - Web & J Jniform compression strength, flat elements supported on bo	shape about the bending axis Maximum slenderness $b(1-(\lambda/Cc))+(\pi^{2*}E^*\lambda^*Sx/Cc^3)]$ [Mnmb/Sx] Flange th edges Lower slenderness limit Upper slenderness limit Flange Slenderness Web Slenderness [k2c*\(Bp*E)/(1.6*b/tb)]	$\lambda F.4.2.5 = \lambda(max) =$ $Mnmb =$ $Fb_n = \Omega =$ $Fb_n/\Omega =$ $Fb_n/\Omega =$ $\lambda 1 = \lambda 2 =$ $b/tb =$ $h/th =$ $Fc_n1 = \Omega =$ $Fc_n1/\Omega =$	40.04 40.04 247.98 k-in 27.75 ksi 1.65 16.82 ksi 20.8 32.8 44.0 111.0 21.74 ksi 1.65 13.17 ksi 0.20 t-1	< Cc ≥ λ2 ≥ λ2
Nominal flexural strength - lateral-torsional buckling [Mn, JNIFORM COMPRESSION ELEMENTS 3.5.4.2 Flat Elements Supported on Both Edges - Web & Jniform compression strength, flat elements supported on bo	shape about the bending axis Maximum slenderness $b(1-(\lambda/Cc))+(\pi^{2*}E^*\lambda^*Sx/Cc^3)]$ [Mnmb/Sx] Elange th edges Lower slenderness limit Upper slenderness limit Flange Slenderness Web Slenderness [k2c* $\sqrt{(Bp^*E)/(1.6^*h/th)}$ ]	$\lambda F.4.2.5 = \lambda(max) =$ $Mnmb =$ $Fb_n = \Omega =$ $Fb_n/\Omega =$ $Fb_n/\Omega =$ $\lambda 1 = \lambda 2 =$ $b/tb =$ $h/th =$ $Fc_n 1 =$ $\Omega =$ $Fc_n 1/\Omega =$ $Fc_n 2 =$ $C = 0$	40.04 40.04 247.98 k-in 27.75 ksi 1.65 16.82 ksi 20.8 32.8 44.0 111.0 21.74 ksi 1.65 13.17 ksi 8.62 ksi	< Cc ≥ λ2 ≥ λ2

B.5.5.1 Flat Elements Supported on Both E	dges - Web			
Flexural compression strength, flat elements s	upported on both edges			
	Lower slenderness limit	$\lambda 1 =$	33.10	
	Upper slenderness limit	$\lambda 2 =$	77.22	> \0
	Sienderness /k/2b*SOPT/Pbr*E\//m*b/b)1	n/tn =	111.00 22.22 koj	≥ ∧2
		-n_n- 0 =	23.23 KSI 1 65	
		Fb $n/\Omega =$	14 08 ksi	
SHEAR			11.00 1.01	
G.2 Shear Supported on Both Edges - Web				
Members with flat elements supported on both	edges Lower slenderness limit	$\lambda 1 =$	35.29	
	Upper slenderness limit	λ2 =	63.16	
	Slenderness	_h/th =	111.00	≥ λ2
	$[\pi^2 E/(1.25^*h/th)^2]$	<i>Fv_n</i> =	5.18 ksi	
		$\Omega =$	1.00 3.14 kei	
		TV_1// 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/	3.14 KSI	
ALLOWABLE STRESSES				
	Allowable bending stress	Fb =	16.82 ksi	
	Allowable axial stress, compression	Fac =	4.89 KSI 3 14 ksi	
	Allowable shear sitess, webs	1 v -	5.14 KSI	
	Elastic buckling stress	_Fe =	9.07 ksi	
Weighted average allo	wable compressive stress (per Section E.3.1)	Fao =	7.48 KSI	
MEMBER LOADING				
Bending Moments				
	Bending moment developed in member	Mz =	0.0 kip-ft	
	Bending stress developed in member	fb =	0.00 ksi	
	Allowable bending stress of member	Fb =	16.82 ksi	< 1.0
Axial Loads				
And Eddds	Axial load developed in member	Fx =	0 lb	
	Axial stress developed in member	fa =	0.00 ksi	
l l l l l l l l l l l l l l l l l l l	Allowable compressive axial stress of member	Fac =	4.89 ksi	< 1.0
o				
Shear Loads	Shear load daysland in momber		0 lb	
	Shear stress developed in member	v2 = fv =	0.00 ksi	
	Allowable shear stress of member webs	Fv =	3.14 ksi	< 1.0
Interaction Equations	1			
	√ [(fb/	/Fb)^2 + (fv/Fv)^2] =	0.00	< 1.0
	Eq H.1-1 Eq H.3.2 fa/Ea + /fb	$Ta/Fa + TD/FD = \frac{1}{2}$	0.00	< 1.0
		(IV/IV) Z =	0.00	\$ 1.0
CONFIGURATION AND MOMENT TABULAT	TION TOOLS			
# of beam= 1	Support Type	Beam =	Simple	
# P load= 0	Beam Length	L =	12.67 ft	
a= 0.00 tt	I ributary Width	W =	0.00 ft	
	Load on Tributary (LL_WL_DL_etc)	P Load=	0.00 pef	
Add	litional Beam Load (Weight or Service Loads)	DL =	0.00 lb/ft	
	Total Loading on Beam	w =	0.00 lb/ft	
	Shear Loading at End of Beam	Vy =	0 lbs	
	CALCULATED MOMENT	Mmax =	0.00 kip-ft	
Deflection Check				
		Support =	Simple	
		Deflection Limit =	L / 180	
	ALLOWABLE DEFLECTION	= w = ۵۷	0.00 lb/lt 0 84 in	
	MAXIMUM DEFLECTION	$\Delta$ Max =	0.00 in	0%
	C	K, Allowable Deflec	tion Sufficient	

AM STRUCTURES 1153 Town Center Drive #201 Jupiter, FL 33458 PH: 561-951-0099

Work Prepared For:	Timan Window Treatments, Inc					
Project:	24577 - Raymond Tatko					
Detail/Member:	Post Design					
		SIGN MANUAL (202	0 EDITION)			
	Specifications for	Aluminum Structur	res (Buildings)			
	Allow	able Stress Desigr	n Č,			
Design Check of 6.5"x6.5"x0.125"/	0.125" 6063-T6 Aluminum Tube					
Per 2020 Aluminum Design Manual						
Alleyr	6062 Tompor	ТС	Critically	N		
Alloy:	temper:	10	weided:	IN		
MEMBER PROPERTIES						
10.000		Fla	inge width	b =	6.500"	
6 1/2*	+	Flange	thickness	tb =	0.125"	
		W	/eb height	h =	6.500"	
		Web	thickness	<i>th</i> =	0.125"	
	Moment of inert	ia about axis paralle	I to flange	lx =	40.50 in^4	
5 50 22		erila about axis para	the x exis	<i>Iy</i> =	40.50 In/4	
12	Radius of ovration about or	entroidal axis paralle	to flance		2 33 in	
°   /	Radius of gyration about	centroidal axis para	llel to web	rv =	2.33 in	
K 5		Torsior	n constant	J =	32.39 in^4	
	Cr	oss sectional area o	of member	A =	7.44 in^2	
	<u></u>	Plastic section	n modulus	Z =	6.05 in^3	
I						
MEMBER SPANS	Lin and a start of a source	I		,	10.05	
Linbrac	Unsupported memo	per lengtn (between sing against side-sw	supports) av X-Axis)	L =	10.0 π 10.0 ft	
Unbrac	ed length for bending (between brac	cing against side-swa	av Y-Axis)	Lbx =	10.0 ft	
Children	ica longit for bonding (bothcorr brad	Effective len	ngth factor	kx =	2.0	
			5	ky =	1.0	
MATERIAL PROPERTIES				-		
		Tensile ultimate	e strength	Ftu =	30 ksi	
		Tensile yiel	d strength	Fty =	25 ksi	
		Compressive yiel	d strength	Fcy =	25 ksi	
		Shear ulumau Shear viel	e strength	FSU =	18 KSI 15 koj	
	Com	pressive modulus o	f elasticity	F =	10 100 ksi	
			, ondonony	-	10,100 101	
BUCKLING CONSTANTS						
	Compression in colum	ns & beam flanges (	(Intercept)	Bc =	27.64 ksi	
	Compression in col	umns & beam flange	es (Slope)	Dc =	0.14 ksi	
	Compression in columns	& beam flanges (Int	ersection)	Cc =	78.38 ksi	
	Compre	ession in flat plates (	(Intercept)	Bp =	31.39 ksi	
	Compress	ipression in flat plates (Int	es (Siope)	Dp = Cn =	0.17 KSI 73 55 ksi	
	Compressive bending stress in sol	lid rectangular bars (	(Intercept)	Bbr =	46 12 ksi	
	Compressive bending stress in	solid rectangular ba	rs (Slope)	Dbr =	0.38 ksi	
	Shear	stress in flat plates (	(Intercept)	Bs =	18.98 ksi	
	She	ear stress in flat plate	es (Slope)	Ds =	0.08 ksi	
	Shear stre	ess in flat plates (Int	ersection)	Cs =	94.57 ksi	
Ultimate stre	ingth coefficient of flat plates in comp	pression (slendernes	s limit λ2)	k1c =	0.35	
Utimate strength co	Liltimate strength of flat plates in Compression	i (sitess for siendern bending (slendernos	$1000 > \Lambda 2$	K2C =	2.27	
Liltin	nate strength of flat plates in bending	stress for slender	1 = 1 = 1 = 1	k2h =	2 04	
		Tension	coefficient	kt =	1.0	
D.2 Axial Tension						
Tensile Yielding - Unwelded Members	S		[Fty]	Fty_n =	25.00 ksi	
				$\Omega =$	1.65	
Tensile Runture - Unwelded Momhor	e		[Etu/k+1	$rty_n/t_l = Etu p =$	15.15 KSI 30.00 koj	
Tonsile Rupture - Onwelded Welliber	3		լուառել	0 =	1 95	
				Ftu $n/\Omega t =$	15.38 ksi	

E.2 Compression Member Buckling				
Axial, gross section subject to buckling	Lower slenderness limit	$\lambda 1 =$	18.23	
	Upper slenderness limit	λ2 =	78.38	
	Slenderness	$\lambda(max) =$	102.89	≥ λ2
	[0.85π²Ε/λ²]	Fc_n =	8.00 ksi	
		Ω = Fc_n/Ω =	1.65 4.85 ksi	
		-		
3 Local Buckling	acal buckling the uniform compressive			
trength is addressed in Section B.5.4 calculated below.	soal buokang, are annorm compreserve			
3.5.4.2 - Flat elements supported on both edges (Flange)				
3.5.4.2 - Flat elements supported on both edges (Web)				
E.4 Buckling Interaction				
er Table B.5.1	[π²*E/ (1.6*b/tb)²]	Fe(flange) =	15.58 ksi	
	[Fc_n]	Fc_n =	8.00 ksi	
	Fe(flange) > Fc_n (E.2 Member Buckling)	Ω=	1.65	
	[ <del>+2</del> * <b>5</b> / /1 6*b//b)2]	$Fc_n/\Omega =$	4.85 KSI	
	[17~"=/ (1.0"1/(1)*] [Fc_n]	Fe(web) =	10.00 KSI 8 NN kei	
	Fe(web) > Fc_n (E.2 Member Bucklina)	Ω=	1.65	
	(	<b>Fc_n</b> /Ω =	4.85 ksi	
-LEXURAL MEMBERS - 2 Yielding and Rupture				
Jominal flexural strength for yielding and rupture	Limit State of Yielding			
	[Z*Fcy]	Mnp =	151.29 k-in	
	[Mnp/Z]	Fb_n =	25.00 ksi	
		$\Omega =$	1.65	
	Limit State of Runture	FD_n/1/ =	15.15 KSI	
	[Z*Ftu/kt]	Mnu =	181 55 k-in	
	[Mnu/Z]	Fb n=	30.00 ksi	
		Ω =	1.95	
		Fb_n/Ω =	15.38 ksi	
4 Lateral-Torsional Buckling				
Square or rectangular tubes subject to lateral-torsional bu	ickling			
Slenderness	tor shapes symmetric about the bending axis	$\lambda F.4.2.1 =$	15.13	
	Signderness for closed shapes	Λ F.4.2.3 =	14.78	
	Maximum slenderness	λ(max) =	15.13	< Cc
Nominal flexural strength - lateral-torsional buckling		((max))	10.10	.00
	[Mnp(1-(λ/Cc))+(π²*E*λ*Sx/Cc^3)]	Mnmb =	161.12 k-in	
	[Mnmb/Sx]	Fb_n =	12.93 ksi	
		Ω =	1.65	
		FD_n/12 =	7.84 KSI	
INIFORM COMPRESSION ELEMENTS				
3.5.4.2 Flat Elements Supported on Both Edges - Web	<u>o &amp; Flange</u>			
Uniform compression strength, flat elements supported or	1 both edges	11 -	22.0	
	Lower sienderness limit	$\lambda T = \lambda 2 =$	22.8 30.2	
	Flange Slenderness	b/tb =	50.0	≥λ2
	Web Slenderness	h/th =	50.0	≥λ2
	[k2c*√(Bp*E)/(1.6*b/tb)]	Fc_n1 =	15.98 ksi	
		Ω =	1.65	
		Fc_n1/Ω =	9.68 ksi	
	[ĸ2C^√(Bp^E)/(1.6^n/th)]	rc_n2 =	15.98 KSI	
		$\frac{1}{1}$ =	9.68 kei	

	AENTO				
B.5.5.1 Flat Elements Supported	on Both Edges - Web				
Flexural compression strength, flat e	elements supported on both edges				
		Lower slenderness limi	t $\lambda 1 =$	34.73	
		Upper slenderness limi	$\lambda 2 =$	92.95	
		Slenderness	h/th =	50.00	λ1 - λ2
		[Bbr-m*Dbr*h/th]	Fb_n =	33.71 ksi	
			Ω =	1.65	
			Fb_n/Ω =	20.43 ksi	
SHEAR					
G.2 Shear Supported on Both Edg	ges - Web				
Members with flat elements support	ted on both edges	Lower slenderness limi	$\lambda 1 =$	38.73	
		Upper slenderness limi	$\lambda 2 =$	75.65	
		Slenderness	h/th =	50.00	λ1 - λ2
		[Bs-1.25Ds*h/th]	Fv_n =	13.84 ksi	
			$\Omega =$	1.65	
			FV_n/\] =	8.39 KSI	
ALLOWABLE STRESSES					
		Allowable bonding stress		6 E4 ka	
	Allowa			0.04 KSI	
	Allowa	Allowable shear stress; web		4.00 KSI	
	A	Nilowable silear siless, webs	P FV -	0.39 KSI 15 15 kci	
	~		rai –	15.15 KSI	
		Elastic buckling stress	5 Fe =	4.83 ksi	
N	Neighted average allowable compressi	ive stress (per Section E.3.1)	Fao =	9.68 ksi	
Bending Moments					
Bonang Momente	Bending m	oment developed in member	Mz =	1.7 kin_ft	
	Bending	stress developed in member	fb =	1.64 kei	
	Allowah	ble bending stress of member	- Eb =	6.54 ksi	< 1.0
				0.0110	
Compression Loads					
	Compressio	n load developed in member	P =	3,056 lb	
	Compression	stress developed in member	fc =	0.41 ksi	
	Allowable compre	essive axial stress of member	Fac =	4.85 ksi	< 1.0
Tension Loads	<b>T</b>		-		
	I ensio	on load developed in membel	/=	306 lb	
		stress developed in member	π=	0.03 KSI	. 1 0
	Allowable Te		Fal =	10.10 KSI	< 1.0
Shear Loads					
	Shea	ar load developed in member	Vz =	462 lb	
	Shear	stress developed in member	fv =	0.30 ksi	
	Allowable s	shear stress of member webs	Fv =	8.39 ksi	< 1.0
Interaction Equations					
		√ [(	fb/Fb)^2 + (fv/Fv)^2] =	0.25	< 1.0
			fa/Fa + fb/Fb =	0.34	< 1.0
		fa/Fa +	(fb/Fb)^2 + (fv/Fv)^2 =	0.34	< 1.0
CONFIGURATION AND MOMENT	TABULATION TOOLS				
Member Loads:					
Mx = 20.44 kip-in	Applied Moment Per Member	30 PSF	Total Gravity Load		
My = 1.36 kip-in	Applied moment Per Member	6.3 FT	Post Trib Area in X-Axis		
Tn = 0.33 kip-in	Applied Torsion Per Member	16.1 FT	Post Trib Area in Y-Axis		
Vx = 216 lbs	Applied Shear Load Per Member	3 PSF	Uplift		
Vy = 408 lbs	Applied Shear Load Per Member	17 PSF	Lateral Load		
V = 462 lbs	Applied Resultant Shear Load Per Me	ember			
P = 3,056 lbs	Applied axial compression load				
T = 306 lbs	Applied axial tension load	2.48 kip-in	Seismic Moment		

Work	Prepared For	: Timan Window Treatments, Inc
	Project	24577 - Raymond Tatko
N	Member/Detail	Beam To Beam
Steel Spaced	Thread Tapp	ing Screw to Aluminum Connections
+2020 Aluminum	n Design Manua	I, *AMMA TIR-A9-2014
Anchor	1/A_1A SMAS 21	6 SS Stool Scrow
Size:	1/4-14 SMS	Nominal Anchor Size Designation
Allov:	316 55	Screw Material
Ftu=	100 ksi	Anchor I Iltimate Tensile Strength
Fv =	65 ksi	Anchor Yield Strength
D =	0.250''	Nominal Screw Diameter (*Table 20.1.20.2)
Dmin =	0.185''	Basic Minor Diameter (*Table 20.1.20.2)
As =	0.027 in ²	Tensile Stress Area (*Table 20.1,20.2)
Ar =	0.027 in ²	Thread Root Area (*Table 20.1,20.2)
n =	14	Thread Per Inch
Dw=	0.625''	Washer Diameter Consider Washer?
Dws =	0.500''	Anchor Head Diameter
Dh =	0.250''	Nominal Hole Diameter
Screw Boss?	No	Is anchor placed in a screw boss/chase/slot?
Countersunk?	No	Yes or No?
CS Depth =		Countersink depth
de =	0.500''	Aluminum Edge Distance
Member in Conta	act with Screw H	Head:
Alloy 1:	6063-T6	
t1 =	0.125''	Thickness of Member 1
Ftu1 =	30 ksi	Tensile Ultimate Strength of Member 1
Fty1 =	25 ksi	Tensile Yield Strength of Member 1
Member not in C	ontact with Scr	ew Head.
Alloy 2.	6063-T6	
t2 =	0.125"	Thickness of Member 2
Le =	0.125"	Depth of Full Thread Engagement Into t2 (Not Including Tapping/Drilling Point)
Ftu2 =	30 ksi	Tensile Ultimate Strength of Member 2
Ftv2 =	25 ksi	Tensile Yield Strength of Member 2
, t3 =	0.125''	Screw Boss Wall Thickness
Le1 =	0.500''	Minimum Depth of Full Thread Engagement Into Screw Boss If
		Applicable (Not Including Tapping/Drilling Point)
		,

Allowable Tensic	<u>n</u>	
C=	1.0	Coeff. Dependent On Screw Location (†Sect. J.5.4.2)
Ks=	1.2	Coeff. Dependent On Member 2 Thickness (†Sect. J.5.4.1.1b)
Rn_t1 =	937.5 lb	Nominal Pull-Out Strength Of Screw (†Sect. J.5.4.1.1b)
Rn t2 =	937.5 lb	Nominal Pull-Over Strength Of Screw (†Sect. J.5.4.2)
	N/A	Nominal Pull-Out Strength From Screw Boss (if applicable) (†Sect. J.5.4.1.2)
_ Pnt =	896.0 lb	Allowable Tensile Capacity Of Screw (*Eqn. 10.4-10.7)
Ω =	3.0	Safety Factor For Connections; Building Type Structures
Ω =	3.0	Safety Factor For Anchor
	Allowable	e Tension = 313 lb
Allowable Shear:		
Rn_v1 =	1875.0 lb	Bearing On Member 1 (TSect. J.5.5.1)
Rn_v2 =	1875.0 lb	Bearing On Member 2 (TSect. J.5.5.1)
Rn_v3 =	2784.2 lb	Screw Tilting (†Sect. J.5.5.2)
Rn_v4 =	N/A	Shear Capacity Of Screw Boss Wall
Pnv =	517.3 lb	Allowable Shear Capacity Of Screw (*Eqn. 7.5)
Ω =	3.0	Safety Factor For Connections; Building Type Structures
Ω =	3.0	Safety Factor For Anchor
	Allowab	le Shear = 517 lb
Alternate Option	IS:	
	Disregard the li	miting allowable capacities from Member 1 (member in contact with
	screw head)	
	Disregard the li	miting allowable capacities from Member 2 (member in NOT in contact
	with screw head	d)
Concontrated Sh	oar & Toncilo P	$\checkmark$ (Select this connection type)
		Anchor Oty at Connection
Trea		Required Tensile Loading on Connection
Vrog	1610 lb	Required these Loading on Connection
vieg	1 00	Exponent factor
	1.00	
Тсар	1875 lb	Tensile capacity of connection (Qty * Rz)
Vcap	3104 lb	Shear capacity of connection (Qty * Rx)
ח	מ	
$\frac{K_Z}{T}$ +	$\frac{\kappa_X}{W} =$	0.52
$T_{CAP}$	V _{CAP}	
		OK, (6) anchors sufficient

Project: 24577 - Raymond Tatko	
Member/Detail: CLIP TO POST CONNECTION	
Steel Spaced Thread Tapping Screw to Aluminum Connections	
+2020 Aluminum Design Manual, *AMMA TIR-A9-2014	
Anchor: 1/4-14 SMS, 316 SS, Steel Screw	
Size: 1/4-14 SMS Nominal Anchor Size Designation	
Alloy: 316 SS Screw Material	
Ftu= 100 ksi Anchor Ultimate Tensile Strength	
Fy = 65 ksi Anchor Yield Strength	
D = 0.250'' Nominal Screw Diameter (*Table 20.1,20.2)	
Dmin = 0.185'' Basic Minor Diameter (*Table 20.1,20.2)	
As = 0.027 in ² Tensile Stress Area (*Table 20.1,20.2)	
Ar = $0.027 \text{ in}^2$ Thread Root Area (*Table 20.1,20.2)	
n = 14 Thread Per Inch	
Dw= 0.625'' Washer Diameter Consider Washer?	
Dws = 0.500'' Anchor Head Diameter	
Dh = 0.250'' Nominal Hole Diameter	
Screw Boss? No Is anchor placed in a screw boss/chase/slot?	
Countersunk? No Yes or No?	
CS Depth = Countersink depth	
de = 0.500'' Aluminum Edge Distance	
Member in Contact with Screw Head:	
Alloy 1: 6063-T6	
t1 = 0.125" Thickness of Member 1	
Ftu1 = 30 ksi Tensile Ultimate Strength of Member 1	
Fty1 = 25 ksi Tensile Yield Strength of Member 1	
Manaka and 'n Cantant, lith Care, lland	
Member not in Contact with Screw Head:	
Alloy 2: $6063-16$	
Image:	
Le = 0.125  Depth of Full Thread Engagement into t2 (Not including Tapping/Drilling Point)	
$F(u_2 - SU(K_3)) = F(u_1) = F(u_2 - SU(K_3)) = F(u_1) = F(u_2 - SU(K_3)) = F(u_1) = F(u_2 - SU(K_3)) = F(u_1) = F(u_1)$	
$r_{1}y_{2} = 25 \text{ Ks} \qquad \text{Tensue trend strength of Welliber 2}$ $t_{2} = 0.125'' \qquad \text{Screw Pose Wall Thickness}$	
Lo1 = 0.123 Sciew Doss Wait Hitchiess	
Let - 0.000 Withintum Depth of run Miedu Engagement into Screw Boss IJ	

Allowable Tensic	on	
C=	1.0	Coeff. Dependent On Screw Location (†Sect. J.5.4.2)
Ks=	1.2	Coeff. Dependent On Member 2 Thickness (†Sect. J.5.4.1.1b)
Rn t1 =	937.5 lb	Nominal Pull-Out Strength Of Screw (†Sect. J.5.4.1.1b)
	937.5 lb	Nominal Pull-Over Strength Of Screw (†Sect. J.5.4.2)
	N/A	Nominal Pull-Out Strength From Screw Boss (if applicable) (†Sect. J.5.4.1.2)
Pnt =	, 896.0 lb	Allowable Tensile Capacity Of Screw (*Egn. 10.4-10.7)
0 =	3.0	Safety Eactor For Connections: Building Type Structures
0 =	3.0	Safety Factor For Anchor
	Allowable	$\frac{1}{2}$ Tension = 313 lb
	Allowabic	
Allowable Shear:	<u>.</u>	
Rn_v1 =	1875.0 lb	Bearing On Member 1 (†Sect. J.5.5.1)
Rn_v2 =	1875.0 lb	Bearing On Member 2 (†Sect. J.5.5.1)
Rn v3 =	2784.2 lb	Screw Tilting (†Sect. J.5.5.2)
	N/A	Shear Capacity Of Screw Boss Wall
_ Pnv =	517.3 lb	Allowable Shear Capacity Of Screw (*Egn. 7.5)
Ω =	3.0	Safety Factor For Connections; Building Type Structures
Ω =	3.0	Safety Factor For Anchor
	Allowab	le Shear = 517 lb
Alternate Option	is:	
<u> </u>	<u></u>	
	Disregard the li	miting allowable capacities from Member 1 (member in contact with
	screw head)	<b>0</b> 1 (
	Disregard the li	miting allowable capacities from Member 2 (member in NOT in contact
	with screw hear	d)
		~,
Concentrated Sh	iear & Tensile R	eactions (Select this connection type)
Qty	6	Anchor Qty at Connection
Treq	0 lb	Required Tensile Loading on Connection
Vreq	462 lb	Required Shear Loading on Connection
n	1.00	Exponent factor
_		
Тсар	1875 lb	Tensile capacity of connection (Qty * Rz)
Vcap	3104 lb	Shear capacity of connection (Qty * Rx)
_	D	
$\frac{R_z}{R_z}$ +	$-\frac{R_X}{R_X} =$	0 15
$T_{CAP}$	$V_{CAP}$	0120
		OK, (6) anchors sufficient

Work Prepared For:	Timan Wi	ndow Treatments, Inc
Project:	24577 - R	aymond Tatko
Detail:	Ledger co	nnection to Host
		Loading
Design Linlift (WL) =	3 00 nsf	$\frac{\text{Loading}}{\text{Design Gravity Load ("Grav")} = 24.00 \text{ psf}$
	5.00 psi	Design Gravity Load ( Grav ) - 24.00 psi
		Governing Load
	V	
Ledger Configuration		
\ <b>\</b> / -	6 33 ft	Tributon Width
80 - RI -	30.00 nef	Load on Tributary (LL WL DL etc)
FL =	30.00 psi	Load on Tributary (LL, WL, DL, etc.)
	0.00 lb/ft	Additional Beam Load (Weight or Service Loads)
Pv =	190.00 lb/ft	Total Vertical Loading on Beam
Pf =	19.73 lb/ft	Total Lateral Loading on Beam
S=	1.33 ft	Anchor spacing
# of Screws=	3 pcs	Number of anchors per location
Shear required=	84.44 lb	Per anchor
Tension required=	9.38 lb	Per anchor
Shear Connection	4.47.00 !!	Tension Connection
Capacity=	147.00 lb	Capacity= 405.00 lb
Connection Check=	0.60	Ledger Connection OK
	0.00	
Bracket Spacing=	16	in
Shear required=	253.33 lb	Bracket
Tension required=	26.31 lb	Bracket
Gutter Size=	7.625	in
Moment Arm=	1931.6667	Ib-in
Beam Depth=	5.3125	
I/C Required=	390	ิน
p		

Work Prepared For:	Timan Window Treatments, Inc					
Project: Detail/Member:	Top Bent Plate					
Г						
	ALUMINUM DESIG Specifications for Alu	<u>iN MANUAL (2020</u> uminum Structure	<u>EDITION)</u> s (Buildings	2)		
	Allowab	ole Stress Design	o (Dananigo	5)		
osian Chock of 0 25"v3'	6063 T6 Aluminum Elat Plato					
er 2020 Aluminum Desigr	Manual					
		(	Critically			
Alloy:	6063 Temper:	T6	Welded:	N		
EMBER PROPERTIES						
th –↓ ↓		Flat Plate	e Height	b =	0.250"	
	Moment of inertia a	Flat Plate Th	nickness	tb =	3.000"	
	Moment of inertia	about axis paraller t a about axis paralle	o hange	ix = iy = iy	0.00 In^4	
	Section	n modulus about th	ie x-axis	Sx =	0.03 in^3	
	Radius of gyration about centre	oidal axis parallel t	o flange	rx =	0.07 in	
xx	Radius of gyration about cer	ntroidal axis paralle	el to web	ry =	0.87 in	
~		Torsion of	constant	J =	2.25 in^4	
	Cross	s sectional area of I	member	A =	0.75 in^2	
		Plastic section r	nodulus	Z =	0.05 in^3	
		vvarping o	Constant	Cw =	0.00 In^6	
EMBER SPANS						
	Unsupported member	length (between s	upports)	L =	0.64 ft	
ι	Inbraced length for bending (between l	bracing against sid	le-sway)	Lb =	0.64 ft	
		Effective leng	th factor	<i>k</i> =	1.0	
ATERIAL PROPERTIES						
		Tensile ultimate	strength	Ftu =	30 ksi	
		Tensile yield	strength	Fty =	25 ksi	
	C	Compressive yield	strength	Fcy =	25 ksi	
		Shear ultimate	strength	Fsu =	18 ksi	
	Compre	Shear yield	strength	Fsy =	15 ksi 10 100 koj	
	Compre		sidduoity	E =	10,100 KSI	
UCKLING CONSTANTS						
	Compression in columns	& beam flanges (In	itercept)	Bc =	27.64 ksi	
	Compression in column	ins & beam flanges	(Slope)	Dc =	0.14 ksi	
		ion in flat plates (Inter	section)	CC = Pn =	78.38 KSi 31.20 koj	
	Compress	ession in flat nlates	(Slope)	 Dn =	0 1.39 KSI () 17 kci	
	Compression	in flat plates (Inter	section)	ср = Ср =	73.55 ksi	
	Compressive bending stress in solid r	rectangular bars (In	ntercept)	Bbr =	46.12 ksi	
	Compressive bending stress in soli	id rectangular bars	(Slope)	Dbr =	0.38 ksi	
Co	ompressive bending stress in solid rect	tangular bars (Inter	section)	Cbr =	80.56 ksi	
	Shear stre	ess in flat plates (In	(Clana)	Bs =	18.98 ksi	
	Shear strong	siress in flat plates	(Slope)	Ds =	0.08 ksi	
l lltimate stren	onear Stress oth coefficient of flat plates in compres	ssion (slenderness	limit $\lambda 2$	US = k1c =	94.07 KSI N 25	
Ultimate strength coe	fficient of flat plates in compression (st	tress for slenderne	ss > λ2)	k2c =	2.27	
	Ultimate strength of flat plates in ben	nding (slenderness	limit $\lambda 2$ )	k1b =	0.50	
Ultim	ate strength of flat plates in bending (st	tress for slenderne	ss > λ2)	k2b =	2.04	
		Tension co	efficient	<i>kt</i> =	1.0	
2 Axial Tension						
ensile Yieldina - Unwelder	d Members		[Ftv]	Ftv n=	25.00 ksi	
			L. 91	Ω =	1.65	
				<b>Fty_n</b> /Ω =	15.15 ksi	
ensile Rupture - Unwelde	d Members		[Ftu/kt]	Ftu_n =	30.00 ksi	
				Ω =	1.95	
				Ftu_n/Ω =	15.38 ksi	

AXIAL COMPRESSION MEMBERS				
Axial, gross section subject to buckling	Lower slendernes Upper slendernes	as limit $\lambda 1 =$ as limit $\lambda 2 =$	18.23 78.38	2.10
	[0.85π	$r^{2}E/\lambda^{2}$ ] $Fc_{n} = \Omega =$	7.59 ksi 1.65	2 1/2
		<b>Fc_n</b> /Ω =	4.60 ksi	
FLEXURAL MEMBERS				
F.2 Yielding and Rupture				
Nominal flexural strength for yielding and	rupture Limit State of Yi	elding Z*Fcy] Mnp =	1.17 k-in	
		$\Omega = \frac{\Gamma D}{\Omega}$	25.00 KSI 1.65 15 15 ksi	
	Limit State of Ru	upture		
	[Z*F [M	<i>Ftu/kt]</i> Mnu = <i>Inu/Z]</i> Fb =	1.41 k-in 30.00 ksi	
		Ω = Fb_n/Ω =	1.95 15.38 ksi	
F.4 Lateral-Torsional Buckling Rectangular bars subject to lateral torsion	aal huckling			
Slender	rness for shapes symmetric about the bendin	Ig axis $\lambda$ F.4.2.1 =	1.05	
	Slenderness for rectangula	r bars λ <i>F.4.2.4</i> =	1.06	
	Slenderness for any s	shape $\lambda F.4.2.5 =$	1.05	< Co
Nominal flexural strength - lateral-torsion	al buckling	$\Lambda(max) =$	1.06	< 60
· · · · · · · · · · · · · · · · · · ·	$[Mnp(1-(\lambda/Cc))+(\pi^{2*}E^*\lambda^*Sx/C$	Cc^3)] Mnmb =	1.16 k-in	
	[Mnm	nb/Sx] Fb_n =	37.21 ksi	
		$\Omega = Fb_n/\Omega =$	22.55 ksi	
SHEAR				
G.2 Shear Supported on Both Edges Members with flat elements supported on	both edges			
members war hat clements supported on	Lower slendernes	is limit $\lambda 1 =$	38.73	
	Upper slendernes	is limit $\lambda 2 =$	75.65	
	Slende	erness b/tb =	0.08 15.00 ksi	≤ λ1
		$\Omega = \Omega$	1.65	
ALLOWABLE STRESSES		<b>Fv_n</b> /Ω =	9.09 ksi	
	Allowable bendings	stress Fb =	15.15 ksi 4.60 ksi	
	Allowable shear	stress Fv =	9.09 ksi	
	Elastic buckling	stress Fe =	4.58 ksi	
Weighted averag	e allowable compressive stress (per Section	E.3.1) Fao =	4.60 ksi	
Benaing Moments	Bending moment developed in me	ember Mz =	0.0 kin-ft	
	Bending stress developed in me	ember fb =	0.00 ksi	
Axial Loads	Allowable bending stress of me	ember Fb =	15.15 ksi	< 1.0
	Axial load developed in me	ember Fx =	390 lb	
	Axial stress developed in me	ember fa =	0.52 ksi	
Shear Loads	Allowable compressive axial stress of me	emper Fac =	4.60 KSI	< 1.0
	Shear load developed in me	ember Vz =	253 lb	
	Shear stress developed in me	ember fv =	0.34 ksi	~ 1.0
Interaction Equations	Anowable shear stress of me		9.09 KSI	< 1.U
		$\sqrt{[(fb/Fb)^2 + (fv/Fv)^2]} =$	0.00	< 1.0
	Eq H.1-1	fa/Fa + fb/Fb = Fa + (fb/Fb)/2 + (fb/Fb)/2 =	0.00	< 1.0
	⊑ү п.ә-∠ la/l	ia · (ID/FD/2 + (IV/FV)^2 =	0.00	> 1.0

#### AM STRUCTURES 1153 Town Center Drive #201 Jupiter, FL 33458 PH: 561-951-0099

Work	Prepared For:	Timan Window Treatments, Inc					
Project: 24577 - Kaymond Tatko							
N	viemper/Detail:						
Chaol Cupped	Thursd Tours	na Causa ta Aluminum Causatiana					
steel spaced							
T2020 Aluminum	i Design Manua	I, *AMMA HR-A9-2014					
Anchor:	1/4-14 SMS. 31	6 SS. Steel Screw					
Size:	1/4-14 SMS	Nominal Anchor Size Designation					
Alloy:	316 SS	Screw Material					
, Ftu=	100 ksi	Anchor Ultimate Tensile Strength					
Fy =	65 ksi	Anchor Yield Strength					
D =	0.250''	Nominal Screw Diameter (*Table 20.1,20.2)					
Dmin =	0.185''	Basic Minor Diameter (*Table 20.1,20.2)					
As =	0.027 in ²	Tensile Stress Area (*Table 20.1,20.2)					
Ar =	0.027 in ²	Thread Root Area (*Table 20.1,20.2)					
n =	14	Thread Per Inch					
Dw=	0.625''	Washer Diameter Consider Washer?					
Dws =	0.500''	Anchor Head Diameter					
Dh =	0.250''	Nominal Hole Diameter					
Screw Boss?	No	Is anchor placed in a screw boss/chase/slot?					
Countersunk?	No	Yes or No?					
CS Depth =		Countersink depth					
de =	0.500''	Aluminum Edge Distance					
Manahar in Cast	at with Corcerd	lood					
Allow 1	ACT WITH SCREW H	<u>1640:</u>					
AIIUY 1: +1 _	0141"	Thickness of Member 1					
LI = Etu1 =	0.141 20 kci	Tancile Illtimate Strength of Member 1					
Ftv1 -	20 KSI 25 kei	Tensile Vield Strength of Member 1					
ity1 –	23 131						
Member not in C	ontact with Scr	ew Head:					
Alloy 2:	6063-T6						
t2 =	0.125''	Thickness of Member 2					
Le =	0.125''	Depth of Full Thread Engagement Into t2 (Not Including Tapping/Drilling Point)					
Ftu2 =	30 ksi	Tensile Ultimate Strength of Member 2					
Fty2 =	25 ksi	Tensile Yield Strength of Member 2					
t3 =	0.125''	Screw Boss Wall Thickness					
Le1 =	0.500''	Minimum Depth of Full Thread Engagement Into Screw Boss If					
		Applicable (Not Including Tapping/Drilling Point)					

Allowable Tensic	<u>n</u>					
C=	1.0	Coeff. Dependent On Screw Location (†Sect. J.5.4.2)				
Ks=	1.2	Coeff. Dependent On Member 2 Thickness (†Sect. J.5.4.1.1b)				
Rn_t1 =	937.5 lb	ominal Pull-Out Strength Of Screw (†Sect. J.5.4.1.1b)				
Rn t2 =	1054.7 lb	Nominal Pull-Over Strength Of Screw (†Sect. J.5.4.2)				
	N/A	Nominal Pull-Out Strength From Screw Boss (if applicable) (†Sect. J.5.4.1.2)				
_ Pnt =	896.0 lb	Allowable Tensile Capacity Of Screw (*Eqn. 10.4-10.7)				
Ω =	3.0	Safety Factor For Connections; Building Type Structures				
Ω =	3.0	Safety Factor For Anchor				
	Allowable	e Tension = 313 lb				
	•					
Allowable Shear:						
Rn_v1 =	2109.4 lb	Bearing On Member 1 (†Sect. J.5.5.1)				
Rn_v2 =	1875.0 lb	Bearing On Member 2 (†Sect. J.5.5.1)				
Rn_v3 =	2784.2 lb	Screw Tilting (†Sect. J.5.5.2)				
Rn_v4 =	N/A	Shear Capacity Of Screw Boss Wall				
Pnv =	517.3 lb	Allowable Shear Capacity Of Screw (*Eqn. 7.5)				
Ω =	3.0	Safety Factor For Connections; Building Type Structures				
Ω =	3.0	Safety Factor For Anchor				
	Allowab	le Shear = 517 lb				
Alternate Option	<u>is:</u> Disregard the lin screw head) Disregard the lin	miting allowable capacities from Member 1 (member in contact with miting allowable capacities from Member 2 (member in NOT in contact				
	with screw head	d)				
Concentrated Sh	ear & Tensile Re	eactions (Select this connection type)				
Qty	4	Anchor Qty at Connection				
Treq	390 lb	Required Tensile Loading on Connection				
Vreq	0 lb	Required Shear Loading on Connection				
n	1.00	Exponent factor				
Тсар	1250 lb	Tensile capacity of connection (Qty * Rz)				
Vcap	2069 lb	Shear capacity of connection (Qty * Rx)				
$\frac{R_Z}{T_{CAP}} +$	$\frac{R_X}{V_{CAP}} =$	0.31				
1		OR, (4) anchors sufficient				

Work Prepared For:	Hudson							
Project	24577 - Raymond Ta	atko						
Detail/Member:	Base Plate Design							
Detail/Member.	Base Flate Design							
	Δ							
	<u>ALC</u> Specif	ications for Alum	inum Structu	uros (Building	e)			
	opecii		Stross Doci	nes (Dununig	5)			
		Allowable Stress Design						
Design Check of 10.625"	x0.5" 6063-T6 Alumin	um Flat Plate						
Per 2020 Aluminum Desig	n Manual							
				Critically				
Alloy:	6063	Temper:	T6	Welded:	N			
MEMBER PROPERTIES								
			Flat P	late Height	b =	10.625"		
tb 🔶 🔶			Flat Plate	Thickness	<i>tb</i> =	0.500"		
<b>−</b>	Mo	ment of inertia abo	out axis parall	el to flange	/x =	49.98 in^4		
	Ν	loment of inertia a	bout axis para	allel to web	/v =	0.11 in^4		
		Section n	nodulus abou	t the x-axis	Sx =	9.41 in^3		
	Radius of gyra	tion about centroid	lal axis parall	el to flange	rx =	3 07 in		
	Radius of d	ration about centro	nidal axis nar	allel to web	rv =	0.14 in		
			Torsic	n constant	, y =	0.14 in \4		
		Cross	ectional area	of member	5 = A -	5.31 in A		
		01055 5			A - 7 -	0.01 1112		
			Plastic sectio		2 =	14.11 In^3		
			vvarpir	ig constant	Cw =	0.00 In^6		
MEMBER SPANS								
	Unsup	ported member lei	ngth (betweei	n supports)	L =	0.72 ft		
	Unbraced length for be	nding (between bra	acing against	side-sway)	Lb =	0.72 ft		
			Effective le	ength factor	<i>k</i> =	1.0		
MATERIAL PROPERTIES	3							
		٦	Fensile ultima	te strength	Ftu =	30 ksi		
			Tensile yie	eld strength	Fty =	25 ksi		
		Co	mpressive vie	ld strength	Fcv =	25 ksi		
			Shear ultima	te strenath	Esu =	18 ksi		
			Shear vie	eld strength	Esv =	15 ksi		
		Compress	ive modulus	of elasticity	F =	10 100 kei		
		Compress	ine medulue	or oldottoity	<b>_</b> _	10,100 K3		
BUCKLING CONSTANTS								
Beenceine contentante	Compres	sion in columns & l	heam flanges	(Intercent)	Po -	27.64 kai		
	Comp	sion in columns & i	& boom floor	(Intercept)	Dc -	27.04 KSI		
	Comp	n in columna ^o		Jes (Silpe)	DC =	U. 14 KSI		
	Compressio		ann nanges (Ir	(Intersection)	CC =	10.30 KSI		
		Compression	i in nat plates	(intercept)	Вр =	31.39 KSI		
		Compress	sion in flat pla	tes (Siope)	<i>Dp</i> =	0.17 ksi		
	<b>.</b>	Compression in	tiat plates (Ir	itersection)	Cp =	73.55 ksi		
	Compressive bending	stress in solid rec	tangular bars	(Intercept)	Bbr =	46.12 ksi		
	Compressive bence	ling stress in solid	rectangular b	ars (Slope)	Dbr =	0.38 ksi		
C	compressive bending st	ress in solid rectan	igular bars (Ir	tersection)	Cbr =	80.56 ksi		
		Shear stress	s in flat plates	(Intercept)	Bs =	18.98 ksi		
		Shear str	ess in flat pla	tes (Slope)	Ds =	0.08 ksi		
		Shear stress in	flat plates (Ir	tersection)	Cs =	94.57 ksi		
Ultimate stre	ngth coefficient of flat p	lates in compression	on (slenderne	ss limit λ2)	k1c =	0.35		
Ultimate strength co	efficient of flat plates in	compression (stre	ss for slende	mess > $\lambda 2)$	k2c =	2.27		
5	Ultimate strength of	flat plates in bendir	ng (slenderne	ess limit $\lambda 2)$	k1b =	0.50		
l Iltin	nate strength of flat plat	es in bendina (stre	ss for slende	mess > $\lambda 2$ )	k2h =	2 04		
Chini			Tension	coefficient	kt =	10		
			101301	coomore	- At -	1.0		
D 2 Avial Tonsion								
Tensile Vielding Unwelde	ad Members			IE+./1	Ety n -	25 00 kai		
renale riciulity - Unwelde				[[-יא]	riy_11 =	20.00 KSI		
					$\Omega =$	1.05		
Tanaila Duntum Unu 11	al Manahana			<b>F1</b> , <b>4</b> , <b>5</b>	$rty_n/\Omega =$	15.15 KSI		
rensile Ruplure - Unwelde	eu members			[Htu/Kt]	$Ftu_n =$	30.00 KSI		
					Ω =	1.95		
					$Ftu_n/\Omega =$	15.38 ksi		

AXIAL COMPRESSION MEMBERS				
E.2 Compression Member Buckling				
Axial, gross section subject to buckling	Lower slenderness limit	$\lambda 1 =$	18.23	
	Upper slenderness limit	λ2 =	78.38	
	Slenderness	λ(max) =	59.76	< λ2
	[(Bc-Dc*λ)(0.85+0.15*((Cc-λ)/(Cc-λ1))]	Fc_n =	17.03 ksi	
		Ω =	1.65	
		<b>Fc_n/</b> Ω =	10.32 ksi	
FLEXURAL MEMBERS				
F.2 Yielding and Rupture				
Nominal flexural strength for yielding and rup	ture Limit State of Yielding			
	[Z*Fcv]	Mnp =	352.78 k-in	
	[Mnp/Z]	Fb =	25.00 ksi	
	.,	Ω =	1.65	
		Fb $n/\Omega =$	15.15 ksi	
	Limit State of Rupture	-		
	/Z*Ftu/kt1	Mnu =	423.34 k-in	
	[] [Mnu/71	Fb =	30.00 ksi	
	[	0 =	1 95	
		Fb $n/\Omega =$	15 38 ksi	
			10.00 101	
F.4 Lateral-Torsional Buckling				
Rectangular bars subject to lateral-torsional to	puckling			
Slendernes	as for shapes symmetric about the bending axis	λ F 4 2 1 =	62.30	
	Slenderness for rectangular bars	$\lambda F 4 2 4 =$	44 04	
	Slenderness for any shape	λ F 4 2 5 =	62 30	
	Maximum slenderness	λ(max) =	62.00	< Co
Nominal flexural strength - lateral-torsional bu	Ickling	n(max) =	02.00	100
interninal novaral etterigin - lateral tereforal et	[Mnn(1-( $\lambda$ /Cc))+( $\pi^{2*}$ E* $\lambda*$ Sx/Cc^3)]	Mnmb =	193 69 k-in	
	[Mnp(1 (1000)) 1(11 2 1 00000 0)] [Mnmb/Sx1	Fh n =	20.59 ksi	
		0 =	1 65	
		Fb $n/\Omega =$	12 48 ksi	
G.2 Shear Supported on Both Edges			12.10 101	
Members with flat elements supported on bot	h edges			
	l ower slenderness limit	$\lambda 1 =$	38 73	
	Upper slenderness limit	λ2 =	75.65	
	Slenderness	h/th =	21.25	< \1
	[Fey]	Ev n =	15 00 kei	= //1
	[, 39]	<u>, v_</u> n =	1 65	
		52 = Ev n/ $\Omega =$	0.00 kei	
ALLOWABLE STRESSES		1 *_1// 22 =	3.03 KSI	
	Allowable banding stress	<b>Ch -</b>	10.40 kai	
	Allowable axial stress compression	- U -	12.40 KSI	
	Allowable axial stress, compression	Fac =	10.32 KSI	
	Allowable siteal sitess	FV-	9.09 KSI	
	Electic huskling stores	<b>-</b> -	14.00 k-	
_:	Elastic Duckling stress	re =	14.32 KSI	
weighted average at	iowable compressive stress (per Section E.3.1)	ra0 =	10.32 KSI	

MEMBER LOADING			
Bending Moments			
Bending moment develop	ed in member Mz =	2.9 kip-ft	
Bending stress develop	ed in member fb =	3.70 ksi	
Allowable bending stre	ss of member Fb =	12.48 ksi	< 1.0
Axial Loads			
Axial load develop	ed in member Fx =	462 lb	
Axial stress develop	ed in member fa =	0.09 ksi	
Allowable compressive axial stre	ss of member Fac =	10.32 ksi	< 1.0
Shear Loads			
Shear load develop	ed in member Vz =	3,056 lb	
Shear stress develop	ed in member fv =	0.58 ksi	
Allowable shear stre	ss of member Fv =	9.09 ksi	< 1.0
Interaction Equations			
	√ [(fb/Fb)^2 + (fv/Fv)^2] =	0.30	< 1.0
Eq H.1-1	fa/Fa + fb/Fb =	0.31	< 1.0
Eq H.3-2	fa/Fa + (fb/Fb)^2 + (fv/Fv)^2 =	0.10	< 1.0







#### Foundation

SEE SKYCIV					]	
	Fo	undation React	tions (K.K	-FT)	-	
		P	V	M	-	
	D	0.234	0.000	0.000		
	W	0.313	0.394	2.839		
	E	0.007	0.019	0.136		
	Lr	0.561	0.000	0.000		
	S	1.168	0.000	0.000		
Descripto d Dolt		Cassian	0.625	in .	r	
Baseplate 4-Bolt	i	Spacing:	8.625	in in	200/	SEE ANCHOR CALC
Plate Thickness: 0.5	IN	width:	10.020	In	30%	Окау
Post Insert to Base Plate Connection	1		Qty	4	Anchor Qty a	at Connection
				F Fsu Ats	5148.59 lb 60000.00 0.34 ir	$\Omega = 4$
				n	20.00 tl	hreads/in
				LE	1.57 ir	1
				Dsmin	0.31 ir	n
				Enmax	0.28 ir	n
					Requir Capa	ed Tension: 8608 lb acity Shear: 20594 lb
					Analyzing Bea M8x40 42%	am to Post Insert with (4) 0 Machine screws
					OK	1

Work Prepared For:	Timan Window Treatments, Inc							
Project: Detail/Member:	24577 - Raymond Talko							
Detai/Member.	i ost Design							
[	ALUMINUM DESIGN MANUAL (	2020 EDITION)						
	Specifications for Aluminum Strue	Specifications for Aluminum Structures (Buildings)						
l	Allowable Stress De	sign						
Design Check of 6 5"x6 5"x0 125"	0 125" 6063-T6 Aluminum Tubo							
Per 2020 Aluminum Design Manual	<u></u>							
		Critically						
Alloy:	6063 Temper: T6	Welded:	N					
MEMBER PROPERTIES		Elongo width	h	C 500"				
6 1/2"	Flar	riange width	D = th =	0.500				
. 1		Web height	h =	6.500"				
	<u>۱</u>	/eb thickness	<i>th</i> =	0.125"				
	Moment of inertia about axis par	allel to flange	/x =	40.50 in^4				
6 2	Moment of inertia about axis p	arallel to web	ly =	40.50 in^4				
	Section modulus ab	out the x-axis	Sx =	12.46 in^3				
	Radius of gyration about centroidal axis par	anel to hange	rx =	∠.33 IN 2.33 in				
E 5	Tor	sion constant	/y = ./ =	2.33 III 32 39 in^4				
	Cross sectional are	ea of member	A =	7.44 in^2				
	Plastic sec	ction modulus	Z =	6.05 in^3				
MEMBER SPANS	I have a set of a second second second to the set		,	10.05				
Linbrac	Unsupported member length (between bracing against side	een supports)	L =	10.0 π 10.0 ft				
Unbrac	ed length for bending (between bracing against side	-sway X-Axis) -sway Y-Axis)	Lbx =	10.0 ft				
Children	Effective	e length factor	kx =	2.0				
		0	ky =	1.0				
MATERIAL PROPERTIES								
	Tensile ultir	mate strength	Ftu =	30 ksi				
	Iensile	yield strength	Fty =	25 ksi				
	Shear ultir	nate strength	Fcy = Fsu =	20 KSI 18 ksi				
	Shear	vield strength	Fsy =	15 ksi				
	Compressive modul	us of elasticity	E =	10,100 ksi				
BUCKLING CONSTANTS			_					
	Compression in columns & beam flang	es (Intercept)	Bc =	27.64 ksi				
	Compression in columns & beam flanges	(Intersection)	Dc = Cc =	0.14 KSI 78 38 ksi				
	Compression in conditions of beam hanges	es (Intercept)	Bp =	31 39 ksi				
	Compression in flat	plates (Slope)	 Dp =	0.17 ksi				
	Compression in flat plates	(Intersection)	Ср =	73.55 ksi				
	Compressive bending stress in solid rectangular ba	ars (Intercept)	Bbr =	46.12 ksi				
	Compressive bending stress in solid rectangular	r bars (Slope)	Dbr =	0.38 ksi				
	Shear stress in flat plat	es (Intercept)	Bs =	18.98 ksi				
	Shear stress in flat plates	(Intersection)	DS = Cs =	0.08 KSI 94 57 ksi				
Ultimate stre	ngth coefficient of flat plates in compression (slender	rness limit λ2)	k1c =	0.35				
Ultimate strength co	efficient of flat plates in compression (stress for slend	derness > λ2)	k2c =	2.27				
	Ultimate strength of flat plates in bending (slender	rness limit λ2)	k1b =	0.50				
Ultin	ate strength of flat plates in bending (stress for sleng	derness > λ2)	k2b =	2.04				
	Tensi	on coefficient	<i>kt</i> =	1.0				
D 2 Axial Tension								
Tensile Yielding - Unwelded Members	3	[Ftv]	Ftv n =	25.00 ksi				
		191	Ω =	1.65				
			$Fty_n/\Omega =$	15.15 ksi				
Tensile Rupture - Unwelded Member	3	[Ftu/kt]	$Ftu_n =$	30.00 ksi				
			Ω =	1.95				
1			rtu n/1/t =	15.38 KSI				

E.2 Compression Member Buckling				
Axial, gross section subject to buckling	Lower slenderness limit	$\lambda 1 =$	18.23	
	Upper slenderness limit	λ2 =	78.38	
	Slenderness	$\lambda(max) =$	102.89	≥ λ2
	[0.85π²Ε/λ²]	Fc_n =	8.00 ksi	
		Ω = Fc_n/Ω =	1.65 4.85 ksi	
		-		
3 Local Buckling	acal buckling the uniform compressive			
trength is addressed in Section B.5.4 calculated below.	soal buokang, are annorm compreserve			
3.5.4.2 - Flat elements supported on both edges (Flange)				
3.5.4.2 - Flat elements supported on both edges (Web)				
E.4 Buckling Interaction				
er Table B.5.1	[π²*E/ (1.6*b/tb)²]	Fe(flange) =	15.58 ksi	
	[Fc_n]	Fc_n =	8.00 ksi	
	Fe(flange) > Fc_n (E.2 Member Buckling)	Ω=	1.65	
	[ <del>+2</del> * <b>5</b> / /1 6*b//b)2]	$Fc_n/\Omega =$	4.85 KSI	
	[17~"=/ (1.0"1/(11)*] [Fc_n]	Fe(web) =	10.00 KSI 8 NN kei	
	Fe(web) > Fc_n (E.2 Member Bucklina)	Ω=	1.65	
	(	<b>Fc_n</b> /Ω =	4.85 ksi	
-LEXURAL MEMBERS - 2 Yielding and Rupture				
Jominal flexural strength for yielding and rupture	Limit State of Yielding			
	[Z*Fcy]	Mnp =	151.29 k-in	
	[Mnp/Z]	Fb_n =	25.00 ksi	
		$\Omega =$	1.65	
	Limit State of Runture	FD_n/1/ =	15.15 KSI	
	[Z*Ftu/kt]	Mnu =	181 55 k-in	
	[Mnu/Z]	Fb n=	30.00 ksi	
		Ω =	1.95	
		Fb_n/Ω =	15.38 ksi	
4 Lateral-Torsional Buckling				
Square or rectangular tubes subject to lateral-torsional bu	ickling			
Slenderness	tor shapes symmetric about the bending axis	$\lambda F.4.2.1 =$	15.13	
	Signderness for closed shapes	Λ F.4.2.3 =	14.78	
	Maximum slenderness	λ(max) =	15.13	< Cc
Nominal flexural strength - lateral-torsional buckling		((max))	10.10	.00
	[Mnp(1-(λ/Cc))+(π²*E*λ*Sx/Cc^3)]	Mnmb =	161.12 k-in	
	[Mnmb/Sx]	Fb_n =	12.93 ksi	
		Ω =	1.65	
		FD_n/12 =	7.84 KSI	
INIFORM COMPRESSION ELEMENTS				
3.5.4.2 Flat Elements Supported on Both Edges - Web	<u>o &amp; Flange</u>			
Uniform compression strength, flat elements supported or	1 both edges	11 -	22.0	
	Lower sienderness limit	$\lambda T = \lambda 2 =$	22.8 30.2	
	Flange Slenderness	b/tb =	50.0	≥λ2
	Web Slenderness	h/th =	50.0	≥λ2
	[k2c*√(Bp*E)/(1.6*b/tb)]	Fc_n1 =	15.98 ksi	
		Ω =	1.65	
		Fc_n1/Ω =	9.68 ksi	
	[ĸ2C^√(Bp^E)/(1.6^n/th)]	rc_n2 =	15.98 KSI	
		$\frac{1}{1}$ =	9.68 kei	

	<b>c</b>				
B.5.5.1 Flat Elements Supported on Bo	s oth Edges - Web				
Flexural compression strength, flat eleme	nts supported on both edges				
	Lov	ver slenderness limi	t λ1 =	34.73	
	Up	per slenderness limi	t λ2 =	92.95	
		Slenderness	h/th =	50.00	λ1 - λ2
		[Bbr-m*Dbr*h/th]	<i>Fb_n</i> =	33.71 ksi	
			Ω =	1.65	
			Fb_n/12 =	20.43 ksi	
SHEAR	M/ab				
<u>G.2 Shear Supported on Both Edges -</u>	beth edges	vor clondornoss limi	+ <i>\1</i> -	20 72	
members with hat elements supported on	Dour edges Lov	ver slenderness limi	t //-	38.73	
	Οp	Slenderness	h/th =	50.00	$\lambda 1 = \lambda 2$
		IBs_1 25Ds*h/th	Ev n =	13.84 kei	XT - XZ
			0 =	1 65	
			$Fv n/\Omega =$	8.39 ksi	
			-		
ALLOWADLE STRESSES					
	Allov	vable bending stress	s Fb =	6.54 ksi	
	Allowable axial	stress, compression	Fac =	4.85 ksi	
	Allowable	e shear stress; web	s Fv =	8.39 ksi	
	Allowable	axial stress, Tensioi	n Fat =	15.15 ksi	
	F	astic buckling stress	Eo -	1 83 kei	
Weigh	ted average allowable compressive stress	s (per Section E.3.1)	, re = Fao =	9.68 ksi	
		· (F			
MEMBER LOADING					
Bending Moments					
	Bending moment de	eveloped in member	Mz =	1.7 kip-ft	
	Bending stress de	eveloped in member	fb =	1.64 ksi	
	Allowable bendi	ng stress of membe	F Fb =	6.54 ksi	< 1.0
Compression Loads					
	Compression load de	eveloped in member	P =	1 401 lb	
	Compression stress de	eveloped in member	fc =	0.19 ksi	
	Allowable compressive ax	ial stress of membe	Fac =	4.85 ksi	< 1.0
Tension Loads					
	Tension load de	eveloped in membe	- <i>T</i> =	140 lb	
	Tension stress de	eveloped in member	ft =	0.01 ksi	
	Allowable Tension ax	ial stress of membe	r Fat=	15.15 ksi	< 1.0
Cheer Leads					
Shear Loaus	Shear load d	eveloped in membe	//7 =	320 lb	
	Shear stress d	eveloped in member	fy =	0.20 lb	
	Allowable shear stre	ess of member webs	Fv =	8.39 ksi	< 1.0
Interaction Equations					
		√ [	fb/Fb)^2 + (fv/Fv)^2] =	0.25	< 1.0
			fa/Fa + fb/Fb =	0.29	< 1.0
		fa/Fa +	(fb/Fb)^2 + (fv/Fv)^2 =	0.29	< 1.0
CONFIGURATION AND MOMENT TABL	JLATION TOOLS				
Member Loads:					
Mx = 20.44 kip-in Appl	lied Moment Per Member	30 PSF	I otal Gravity Load		
My = 1.36 kip-in Appl	lied moment Per Member	6.3 FT	Post Trib Area in X-Axis		
	lied Lorsion Per Member	7.4 + 1	POST I FID AFEA IN Y-AXIS		
VX = 210  lbs Appl	lied Shear Load Per Member	3 255	Uplitt Lateral Lood		
vy = 230 lbs Appl	lieu Snear Load Per Member	17 PSF	Lateral Load		
v = 320  IDS Apple	lieu Resultant Shear Load Per Member				
$T = 140 \text{ lbe} \qquad \text{Appl}$	lied axial tension load	1 14 kin-in	Seismic Moment		
		11-411			



Work Prepared For:	Hudson							
Project	24577 - Raymond Ta	atko						
Detail/Member:	Base Plate Design							
Detail/Member.	Base Flate Design							
	Δ							
	<u>ALC</u> Specif	ications for Alum	inum Structu	uros (Building	e)			
	opecii		Stross Doci	nes (Dununig	5)			
		Allowable Stress Design						
Design Check of 10.625"	x0.5" 6063-T6 Alumin	um Flat Plate						
Per 2020 Aluminum Desig	n Manual							
				Critically				
Alloy:	6063	Temper:	T6	Welded:	N			
MEMBER PROPERTIES								
			Flat P	late Height	b =	10.625"		
tb 🔶 🔶			Flat Plate	Thickness	<i>tb</i> =	0.500"		
<b>−</b>	Mo	ment of inertia abo	out axis parall	el to flange	/x =	49.98 in^4		
	Ν	loment of inertia a	bout axis para	allel to web	/v =	0.11 in^4		
		Section n	nodulus abou	t the x-axis	Sx =	9.41 in^3		
	Radius of gyra	tion about centroid	lal axis parall	el to flange	rx =	3 07 in		
	Radius of d	ration about centro	nidal axis nar	allel to web	rv =	0.14 in		
			Torsic	n constant	, y =	0.14 in \4		
		Cross	ectional area	of member	5 = A -	5.31 in A		
		01055 5			A - 7 -	0.01 1112		
			Plastic sectio		2 =	14.11 In^3		
			vvarpir	ig constant	Cw =	0.00 In^6		
MEMBER SPANS								
	Unsup	ported member lei	ngth (betweei	n supports)	L =	0.72 ft		
	Unbraced length for be	nding (between bra	acing against	side-sway)	Lb =	0.72 ft		
			Effective le	ength factor	<i>k</i> =	1.0		
MATERIAL PROPERTIES	3							
		٦	Fensile ultima	te strength	Ftu =	30 ksi		
			Tensile yie	eld strength	Fty =	25 ksi		
		Co	mpressive vie	ld strength	Fcv =	25 ksi		
			Shear ultima	te strenath	Esu =	18 ksi		
			Shear vie	eld strength	Esv =	15 ksi		
		Compress	ive modulus	of elasticity	F =	10 100 kei		
		Compress	ine medalae	or oldottoity	<b>_</b> _	10,100 K3		
BUCKLING CONSTANTS								
Beenceine contentante	Compres	sion in columns & l	heam flanges	(Intercent)	Po -	27.64 kai		
	Comp	sion in columns & i	& boom floor	(Intercept)	Dc -	27.04 KSI		
	Comp	n in columna ^o		Jes (Silpe)	DC =	U. 14 KSI		
	Compressio		ann nanges (Ir	(Intersection)	CC =	10.30 KSI		
		Compression	i in nat plates	(intercept)	Вр =	31.39 KSI		
		Compress	sion in flat pla	tes (Siope)	<i>Dp</i> =	0.17 ksi		
	<b>.</b>	Compression in	tiat plates (Ir	itersection)	Cp =	73.55 ksi		
	Compressive bending	stress in solid rec	tangular bars	(Intercept)	Bbr =	46.12 ksi		
	Compressive bence	ling stress in solid	rectangular b	ars (Slope)	Dbr =	0.38 ksi		
C	compressive bending st	ress in solid rectan	igular bars (Ir	tersection)	Cbr =	80.56 ksi		
		Shear stress	s in flat plates	(Intercept)	Bs =	18.98 ksi		
		Shear str	ess in flat pla	tes (Slope)	Ds =	0.08 ksi		
		Shear stress in	flat plates (Ir	tersection)	Cs =	94.57 ksi		
Ultimate stre	ngth coefficient of flat p	lates in compression	on (slenderne	ss limit λ2)	k1c =	0.35		
Ultimate strength co	efficient of flat plates in	compression (stre	ss for slende	mess > $\lambda 2)$	k2c =	2.27		
5	Ultimate strength of	flat plates in bendir	ng (slenderne	ess limit $\lambda 2)$	k1b =	0.50		
l Iltin	nate strength of flat plat	es in bendina (stre	ss for slende	mess > $\lambda 2$ )	k2h =	2 04		
Chini			Tension	coefficient	kt =	10		
			101301	coomore	- At -	1.0		
D 2 Avial Tonsion								
Tensile Vielding Unwelde	ad Members			IE+./1	Ety n -	25 00 kai		
renale riciulity - Unwelde				[[-נא]	riy_11 =	20.00 KSI		
					$\Omega =$	1.05		
Tanaila Duntum Linu II	al Manahana			<b>F1</b> , <b>4</b> , <b>5</b>	$rty_n/\Omega =$	15.15 KSI		
rensile Ruplure - Unwelde	eu members			[Htu/Kt]	$Ftu_n =$	30.00 KSI		
					Ω =	1.95		
					$Ftu_n/\Omega =$	15.38 ksi		

AXIAL COMPRESSION MEMBERS				
E.2 Compression Member Buckling				
Axial, gross section subject to buckling	Lower slenderness limit	$\lambda 1 =$	18.23	
	Upper slenderness limit	λ2 =	78.38	
	Slenderness	λ(max) =	59.76	< λ2
	[(Bc-Dc*λ)(0.85+0.15*((Cc-λ)/(Cc-λ1))]	Fc n =	17.03 ksi	
		_Ω =	1.65	
		<b>Fc_n/Ω =</b>	10.32 ksi	
		-		
FLEXURAL MEMBERS				
F.2 Yielding and Rupture				
Nominal flexural strength for vielding and rupt	ure Limit State of Yielding			
5,5,1	[Z*Fcv]	Mnp =	352.78 k-in	
	[Mnp/Z]	, Fb =	25.00 ksi	
	[·····]]	Ω =	1.65	
		Fb $n/\Omega =$	15 15 ksi	
	Limit State of Rupture			
	[7*Ftu/kt]	Mnu =	423 34 k-in	
	[ <u></u> [ <u></u> ] [Mnu/7]	Fb =	30.00 ksi	
	[11110/2]	0 =	1 95	
		<b>Fb</b> $n/\Omega =$	15 38 ksi	
		10_1/122 -	10.00 KSI	
F 4 Lateral-Torsional Buckling				
Rectangular bars subject to lateral-torsional b	uckling			
Slendernes	s for shapes symmetric about the bending axis	$\lambda E 4 2 1 =$	62 30	
	Slenderness for rectangular bars	λΓ.4.2.1 = λ Ε Λ 2 Λ =	44.04	
	Slenderness for any shape	λ F 4 2 5 -	62.30	
	Maximum slenderness	A(max) =	62.30	
Nominal flexural strength Jateral torsional bu	waximum siendemess	n(max) =	02.50	< CC
	$[M_{nn}(1_{\lambda}/C_{c})) + (\pi^{2*}E^{*}\lambda^{*}S_{v}/C_{c}^{3})]$	Mnmh =	103 60 k-in	
	[Mnp(1-(// CC)) - (// E // SX/CC 3)] [Mnph/Sy]	Eb n -	20 50 kei	
		- 11_01	20.09 KSI 1 65	
		$\Omega =$	12.48 kei	
G 2 Shear Supported on Both Edges		10_1/12 -	12.40 KSI	
Members with flat elements supported on both	h edges			
Members with hat elements supported on both	Lower slenderness limit	11 -	20 72	
	Linner slenderness limit	17 =	75.65	
	Slenderness	//2 =	21.05	< 11
	Genderness [Equi	D/10 =	21.20 15.00 kai	2 11
	[FSy]	rv_11 =	10.00 KSI	
		$\Omega =$	0.00 kai	
		FV_1/12 -	9.09 KSI	
ALLOWABLE STRESSES				
		-	10.101	
	Allowable bending stress	- b =	12.48 KSI	
	Allowable axial stress, compression	Fac =	10.32 ksi	
	Allowable shear stress	Fv =	9.09 ksi	
	Flastic buckling stress	Fe =	14.32 kei	
Weighted average all	owable compressive stress (per Section F 3 1)	Fac =	10.32 ksi	
		, 40 -	10.02 101	

MEMBER LOADING					
Bending Moments					
Bending	g moment develope	d in member	Mz =	2.9 kip-ft	
Bend	ing stress develope	l in member	fb =	3.70 ksi	
Allov	vable bending stress	s of member	Fb =	12.48 ksi	< 1.0
Axial Loads					
	Axial load develope	d in member	Fx =	320 lb	
A	kial stress develope	l in member	fa =	0.06 ksi	
Allowable com	pressive axial stres	s of member	Fac =	10.32 ksi	< 1.0
Shear Loads					
S	hear load develope	d in member	Vz =	1,401 lb	
She	ear stress develope	d in member	fv =	0.26 ksi	
AI	lowable shear stres	s of member	Fv =	9.09 ksi	< 1.0
Interaction Equations					
		√ [(fb/Fb)^2	+ (fv/Fv)^2] =	0.30	< 1.0
	Eq H.1-1	fa	a/Fa + fb/Fb =	0.30	< 1.0
	Eq H.3-2	fa/Fa + (fb/Fb)^2	2 + (fv/Fv)^2 =	0.09	< 1.0



24577 - Raymond Tatko

7/12/2024

1.Project Information	
Company:	
<b>Project Engineer:</b>	
Address:	Jupiter, FL 33458
Phone:	M: - P: -
Email:	amccann@am-structures.com
Proiect Name:	Raymond Tatko
Project Address:	1751 E Hines Hill Rd. Hudson, OH 44236
Notes:	
2 Selected Anchor Informa	tion
Selected Anchor :	Screw-Bolt+
Brand:	DEWALT
Material:	5/8" Ø Low Carbon Steel
Embedment:	$h_{ef}$ 3.73 in $h_{nom}$ 5 in
Approval:	ICC-ES ESR-3889
Issued/Revision:	Nov.2023 -
Drill method:	Hammer Drilled
3.Design Principles	
Design Method:	ACI 318-19
Load Combinations:	IBC 2018 User Defined Loads
Seismic Loading:	Tension None Shear None $\Omega_0 = 2.5$
4.Base Material Information	)n
Concrete:	
Type:	Cracked Normal Weight Concrete
Strength	3000 psi
Reinforcement:	
Edge Reinforcement	None or $\leq #4$ Rebar Transient Ne (Condition D) Show Ne (Condition D)
Spacing Controls Decelored	Tension No (Condition B) Shear No (Condition B)
Controls Breakout	Tension Faise Shear Faise
Base Plate:	Thickness 0.5 in Length 7.5 in Width 18 in
Sizing	None Height 0 in
Stanuon	36000 nsi
Profile	$HSS Rectangular = 6 \times 6 \times 0.125$
r i unici	



24577 - Raymond Tatko

7/12/2024

5.Geometric	Conditions
-------------	------------



h _{slab}	42	in	h _{min}	7.000	in
Edge Cx-	5	in	c _{min}	1.750	in
Edge Cx+	5	in	c _{ac}	10.100	in
Edge Cy-	5	in	s _{min}	2.750	in
Edge Cy+	5	in			

#### 6.Summary Results

<b>Tension Loading</b>					
Design Proof	Demand(lb)	Capacity(lb)	Utilization	Status	Critical
Steel Strength:	3429.77	17069.00	0.201	OK	
Concrete Breakout Strength:	10289.00	11829.00	0.870	OK	Controls
Pullout Strength:	3430.00	4913.00	0.698	OK	

#### Shear Loading

Design Proof	Demand(lb)	Capacity(lb)	Utilization	Status	Critical
Steel Strength	246.00	9351.00	0.026	OK	
Concrete Breakout Strength:	739.00	5290.00	0.140	OK	Controls
Pryout Strength	739.00	25478.00	0.029	OK	



7/12/2024

#### 7.Warnings and Remarks

#### ANCHOR DESIGN CRITERIA IS SATISFIED

24577 - Raymond Tatko



Z

The results of the calculations carried out by means of the DDA Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an design professional/engineer, particularly with regard to compliance with applicable standards, norms and permits, prior to using them for your specific project. The DDA Software serves only as an aid to interpret standards, norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.

#### 8.Load Condition

٠

Design	Loads /	' Action	S					
Nu	489	lb	Vux	0	lb	Vuy	-739	lb
Muz	0	in-lb	Mux	32710	in-lb	Muy	0	in-lb
Consid	er Load I	Reversal	X	Direction	0%	Y D	irection	0%



#### DEWALT DESIGN ASSIST 1.7.2.0

24577 - Raymond Tatko

9.Load	Distribution									
Max. con	ncrete compressive s	train: 0.202	%	ó A	Anchor E	eccentricity	_			
Max. con	ncrete compressive s	tress: 880.265	р	si e	x 0	in	ey	0	in	
Resultin	g tension force:	10289.2	97 11	о <u>Р</u>	Profile E	ccentricity	_			
Resultin	g compression force	: 9800.29	9 11	o e	ex 0	in	ey	0	in	
Resultin	g anchor forces / Loa	ad distribution								
Anchor	Tension Load (lb)	Shear Load (1	b)	Compone	nt Shear	Load (lb)	Anch	or Co	ordinates (i	n)
			S	hear X	S	hear Y	Х		Y	
1	3429.77	246.3	(	).0	-	246.3	0.00	C	0.000	
2	3429.77	246.3	(	).0	-	246.3	8.00	C	0.000	
3	3429.77	246.3	(	).0	-	246.3	-8.00	00	0.000	



24577 - Raymond Tatko

7/12/2024

#### **10.Design Proof Tension Loading Steel Strength** ACI 318-19 17.6.1 Variables N_{sa} (lb) 0.65 26260.000 Results Table 17.5.2 $\phi N_{sa}$ 17069.0 lb = N_{ua} 3429.8 lb = Utilization = 20.1%**Concrete Breakout Strength** N ACI 318-19 17.6.2 Equations Eqn. 17.6.2.1b $N_{cbg} = (A_{Nc} / A_{Nc0}) \cdot \Psi_{ec,N} \cdot \Psi_{ed,N} \cdot \Psi_{c,N} \cdot \Psi_{cp,N} \cdot N_b$ $N_b = k_c \cdot \lambda_a \cdot (f_c)^{0.5} \cdot h_{ef}^{1.5}$ Eqn. 17.6.2.2.1 Variables $\frac{A_{Nc} (in^2)}{259.964} = \frac{A_{Nc0} (in^2)}{99.980} = \frac{\Psi_{ec,N}}{1.000} = \frac{\Psi_{ed,N}}{1.000} = \frac{\Psi_{c,N}}{1.000}$ $\frac{\Psi_{cp,N}}{1.000}$ f_c (psi) h'_{ef} (in) $\frac{\lambda_a}{1.000}$ C_{amin} (in) $\frac{k_c}{21.000}$ c_{ac} (in) 1.000 3000 3.33 5 10.100 Nb (lb) φ 0.65 6998.950 Results $\phi N_{cbg}$ 11829 lb Table 17.5.2 =10289.0 lb N_{ua} = Utilization 87.0% =



Utilization

=

69.8%

24577 - Raymond Tatko

7/12/2024

Pullout Strengt	t <b>h:</b>					<u>∔</u> N
ACI 318-19 17.	.6.3					
						A
Equations						
$N_{pn} = \Psi_{c,P}$	$. N_{p} . (f_{c} / 25)$	00) ⁿ				Eqn. 17.6.3.1
Variables						
$\Psi_{c,P}$	N _{p,eq}	(lb)	f _c (psi)	n	φ	
1.000	7559.000		3000	0.500	0.65	
Results						
φN _{pn}	=	4913	lb			
N _{ua}	=	3430	lb			Table 17.5.2

1		

24577 - Raymond Tatko

7/12/2024

S4 1 S4					
Steel Strength:					
ACI 318-19 17.7.1					
Variables					
$V_{sa}$ (lb)	φ				
15585.00	0.60				
Results					
$\phi v_{sa}$	= 93	51 lb			
V _{ua}	= 24	6 lb			Table 17.5.2
Utilization	= 2.6	5%			
Concrete Breakou	ıt Strength				
ACI 318-19 17.7.2					
Equations					
$V = (A \cdot \cdot)$	/ A	W W N	r. V.		Ean. 17.7.2.
Cbg (Tryc	$\psi = 0$	$\cdot \Psi \text{ed}, \nabla \cdot \Psi \text{c}, \nabla \cdot \Psi$	h,v••b		
		$\sim \alpha \sim 0.5$	$(-1)^{15}$		Ean
$V_{b} = (7) \cdot (1_{e})$	$(d_a)^{0.2} \cdot (d_a)^{0.5}$	) . $\lambda_{a}$ . (f'_c) ^{0.3} .	(c _{a1} ) ¹¹⁰		17.7.2.2.1a
$v_{b} = (7.1)^{1}$	$(d_a)^{0.2} \cdot (d_a)^{0.5}$	). $\lambda_{a}$ . ( $f_{c}$ ) ^{0.3} .			17.7.2.2.1a
$V_b = (7.1)^2$	$(d_a)^{0.2} \cdot (d_a)^{0.5}$	). $\lambda_{a}$ . ( $f_{c}$ ) ^{0.3} .	(c _{a1} )		17.7.2.2.1a
$V_b = (7.1)^{T_e}$ Variables $A_{Vc}$ (in ² )	$(d_a)^{0.2} \cdot (d_a)^{0.5}$	). $\lambda_a$ . ( $\Gamma_c$ ) ^{0.3} . ( $\Psi_{ec,V}$	$\Psi_{\rm ed,V}$	Ψ _{c,V}	<u>Ψ_{h,V}</u>
$V_{b} = (7.1)^{2}$ Variables $\frac{A_{Vc} (in^{2})}{195.000}$	$(d_a)^{0.2} \cdot (d_a)^{0.5}$ $\frac{A_{Vc0}  (in^2)}{112.500}$	). $\lambda_a \cdot (f_c)^{0.3}$ . $\frac{\Psi_{ec,V}}{1.000}$	$\frac{\Psi_{\rm ed,V}}{0.900}$	$\underline{\qquad } \underline{\Psi_{c,V}} \\ 1.000$	$\frac{\Psi_{h,V}}{1.000}$
$V_{b} = (7.1) (1_{e}$ Variables $\frac{A_{Vc} (in^{2})}{195.000}$ $\Psi_{\alpha,V}$	$(d_a)^{0.2} \cdot (d_a)^{0.3}$ $\frac{A_{Vc0}  (in^2)}{112.500}$ $\frac{l_e  (in)}{100}$	). $\lambda_a$ . (f _c ) ^{0.3} . (f _c	$\frac{\Psi_{ed,V}}{0.900}$ $\frac{\lambda_a}{\lambda_a}$	$\frac{\Psi_{c,V}}{1.000}$ f _c (psi)	$\frac{\Psi_{h,V}}{1.000}$ c _{a1} (in)
$V_{b} = (7.1) (1_{e}$ Variables $\frac{A_{Vc} (in^{2})}{195.000}$ $\frac{\Psi_{\alpha,V}}{1.000}$	$(d_a)^{0.2} \cdot (d_a)^{0.3}$ $\frac{A_{Vc0} (in^2)}{112.500}$ $\frac{l_e (in)}{3.730}$	). $\lambda_{a}$ . $(f_{c})^{0.3}$ . $(f_{c})^{$	$\frac{\Psi_{ed,V}}{0.900}$ $\frac{\lambda_a}{1.000}$	$ \frac{\Psi_{c,V}}{1.000} \\ \frac{f_{c}(psi)}{3000} $	$\frac{\Psi_{h,V}}{1.000}$ $\frac{c_{a1}}{5.000}$
$V_{b} = (7.1) (I_{e}$ Variables $\frac{A_{Vc} (in^{2})}{195.000}$ $\frac{\Psi_{\alpha,V}}{1.000}$ $V_{b} (lb)$	$\frac{A_{Vc0} (in^2)}{112.500}$ $\frac{l_e (in)}{3.730}$	) $\lambda_{a} \cdot (f_{c})^{0.3} \cdot f_{c}^{0.3}$ $\frac{\Psi_{ec,V}}{1.000}$ $\frac{d_{a}  (in)}{0.625}$	$\frac{\Psi_{ed,V}}{0.900}$ $\frac{\lambda_a}{1.000}$	$\frac{\Psi_{c,V}}{1.000}$ $\frac{f_c  (psi)}{3000}$ $\frac{V_{cbg}  (lb)}{V_{cbg}}$	$\frac{\Psi_{h,V}}{1.000}$ $\frac{c_{a1}}{5.000}$
$V_{b} = (7.1)^{2} (1_{e}$ Variables $\frac{A_{Vc} (in^{2})}{195.000}$ $\frac{\Psi_{\alpha,V}}{1.000}$ $\frac{V_{b} (lb)}{4844.171}$	$\frac{A_{Vc0} (in^2)}{112.500}$ $\frac{l_e (in)}{3.730}$ $\frac{\phi}{0.70}$	). $\lambda_{a}$ . $(f_{c})^{0.5}$ . $\frac{\Psi_{ec,V}}{1.000}$ $\frac{d_{a}}{0.625}$	$\frac{\Psi_{ed,V}}{0.900}$ $\frac{\lambda_a}{1.000}$	$ \frac{\Psi_{c,V}}{1.000} \\ \frac{f_{c} (psi)}{3000} \\ \frac{V_{cbg} (lb)}{7556.907} $	$\frac{\Psi_{h,V}}{1.000}$ $\frac{c_{a1}}{5.000}$
$V_{b} = (7.1) (1_{e}$ Variables $\frac{A_{Vc} (in^{2})}{195.000}$ $\frac{\Psi_{\alpha,V}}{1.000}$ $\frac{V_{b} (lb)}{4844.171}$ Results	$\frac{A_{Vc0} (in^2)}{112.500}$ $\frac{l_e (in)}{3.730}$ $\frac{\phi}{0.70}$	). $\lambda_{a}$ . $(f_{c})^{0.5}$ . $\frac{\Psi_{ec,V}}{1.000}$ $\frac{d_{a}}{0.625}$	$\frac{\Psi_{ed,V}}{0.900}$ $\frac{\lambda_a}{1.000}$	$ \frac{\Psi_{c,V}}{1.000} \\ \frac{f_{c}}{3000} \\ \frac{V_{cbg}}{7556.907} (lb) $	$\frac{\Psi_{h,V}}{1.000}$ $\frac{c_{a1}}{5.000}$
$V_{b} = (7.1) (I_{e}$ $Variables$ $\frac{A_{Vc} (in^{2})}{195.000}$ $\frac{\Psi_{\alpha,V}}{1.000}$ $\frac{V_{b} (lb)}{4844.171}$ Results $\varphi V_{cbg}$	$\frac{A_{Vc0} (in^2)}{112.500}$ $\frac{I_e (in)}{3.730}$ $\frac{\phi}{0.70}$ = 52	) $\lambda_{a} \cdot (f_{c})^{0.3} \cdot f_{c}^{0.5}$ $\frac{\Psi_{ec,V}}{1.000}$ $\frac{d_{a}  (in)}{0.625}$ 90 lb	$\frac{\Psi_{ed,V}}{0.900}$ $\frac{\lambda_a}{1.000}$	$ \frac{\Psi_{c,V}}{1.000} \\ \frac{f_{c}  (psi)}{3000} \\ \frac{V_{cbg}  (lb)}{7556.907} $	$\frac{\Psi_{h,V}}{1.000}$ $\frac{c_{a1}}{5.000}$
$V_{b} = (7.(1_{e}$ $Variables$ $\frac{A_{Vc} (in^{2})}{195.000}$ $\frac{\Psi_{\alpha,V}}{1.000}$ $\frac{V_{b} (lb)}{4844.171}$ Results $\varphi V_{cbg}$ Direction	$\frac{A_{Vc0} (in^2)}{112.500}$ $\frac{l_e (in)}{3.730}$ $\frac{\phi}{0.70}$ = 52 = Y-	) $\lambda_{a} \cdot (f_{c})^{0.3} \cdot f_{c}^{0.5}$ $\frac{\Psi_{ec,V}}{1.000}$ $\frac{d_{a}  (in)}{0.625}$ 90 lb	$\frac{\Psi_{ed,V}}{0.900}$ $\frac{\lambda_a}{1.000}$	$ \frac{\Psi_{c,V}}{1.000} \\ \frac{f_{c}  (psi)}{3000} \\ \frac{V_{cbg}  (Ib)}{7556.907} $	$\frac{\Psi_{h,V}}{1.000}$ $\frac{c_{al}}{5.000}$
$V_{b} = (7. (1_{e}$ Variables $\frac{A_{Vc} (in^{2})}{195.000}$ $\frac{\Psi_{\alpha,V}}{1.000}$ $\frac{V_{b} (lb)}{4844.171}$ Results $\varphi V_{cbg}$ Direction $V_{ua}$	$\frac{A_{Vc0} (in^2)}{112.500}$ $\frac{I_e (in)}{3.730}$ $\frac{\phi}{0.70}$ = 52 = Y-= = 73^{-1}	) $\lambda_{a} \cdot (f_{c})^{0.3} \cdot f_{c}^{0.5}$ $\frac{\Psi_{ec,V}}{1.000}$ $\frac{d_{a}  (in)}{0.625}$ 90 lb 9 lb	$\frac{\Psi_{ed,V}}{0.900}$ $\frac{\lambda_a}{1.000}$	$ \frac{\Psi_{c,V}}{1.000} \\ \frac{f_{c}  (psi)}{3000} \\ \frac{V_{cbg}  (lb)}{7556.907} $	$\frac{\Psi_{h,V}}{1.000}$ $\frac{c_{a1}}{5.000}$ Table 17.5.2
$V_{b} = (7. (1_{e}$ $Variables$ $\frac{A_{Vc} (in^{2})}{195.000}$ $\frac{\Psi_{\alpha,V}}{1.000}$ $\frac{V_{b} (1b)}{4844.171}$ Results $\varphi V_{cbg}$ Direction $V_{ua}$ Utilization	$\frac{A_{Vc0} (in^2)}{112.500}$ $\frac{l_e (in)}{3.730}$ $\frac{\phi}{0.70}$ = 52 = Y- = 73y = 14	) $\lambda_{a} \cdot (f_{c})^{0.3} \cdot f_{c}^{0.5}$ $\frac{\Psi_{ec,V}}{1.000}$ $\frac{d_{a}  (in)}{0.625}$ 90 lb 99 lb .0%	$\frac{\Psi_{ed,V}}{0.900}$ $\frac{\lambda_a}{1.000}$	$ \frac{\Psi_{c,V}}{1.000} \\ \frac{f_{c}  (psi)}{3000} \\ \frac{V_{cbg}  (lb)}{7556.907} $	$\frac{\Psi_{h,V}}{1.000}$ $\frac{c_{a1}}{5.000}$ Table 17.5.2
$V_{b} = (7. (1_{e}$ Variables $\frac{A_{Vc} (in^{2})}{195.000}$ $\frac{\Psi_{\alpha,V}}{1.000}$ $\frac{V_{b} (lb)}{4844.171}$ Results $\varphi V_{cbg}$ Direction $V_{ua}$ Utilization Shear Breakou	$\frac{A_{Vc0} (in^2)}{112.500}$ $\frac{l_e (in)}{3.730}$ $\frac{\phi}{0.70}$ = 52 = 73 = 14 t Case 2 Controls	) $\lambda_{a} \cdot (f_{c})^{0.3} \cdot f_{c}^{0.5}$ $\frac{\Psi_{ec,V}}{1.000}$ $\frac{d_{a}  (in)}{0.625}$ 90 lb 99 lb .0%	$\frac{\Psi_{ed,V}}{0.900}$ $\frac{\lambda_a}{1.000}$	$ \frac{\Psi_{c,V}}{1.000} \\ \frac{f_{c}  (psi)}{3000} \\ \frac{V_{cbg}  (lb)}{7556.907} $	$\frac{\Psi_{h,V}}{1.000}$ $\frac{c_{a1}}{5.000}$ Table 17.5.2
$V_{b} = (7.(1_{e}$ $V_{b} = (7.(1_{e}$ $V_{c} = (1_{e})$ $V_{c} = (1_{e})$ $\frac{V_{\alpha,V}}{1000}$ $\frac{V_{\alpha,V}}{1000}$ $\frac{V_{b} = (1_{b})}{4844.171}$ Results $\varphi V_{cbg}$ Direction $V_{ua}$ Utilization Shear Breakou	$\frac{A_{Vc0} (in^2)}{112.500}$ $\frac{l_e (in)}{3.730}$ $\frac{\phi}{0.70}$ = 52 = Y- = 73^3 = 14 t Case 2 Controls	) $\lambda_{a} \cdot (f_{c})^{0.3} \cdot f_{c}^{0.5}$ $\frac{\Psi_{ec,V}}{1.000}$ $\frac{d_{a}  (in)}{0.625}$ 90 lb 99 lb .0%	$\frac{\Psi_{ed,V}}{0.900}$ $\frac{\lambda_a}{1.000}$	$ \frac{\Psi_{c,V}}{1.000} \\ \frac{f_{c}  (psi)}{3000} \\ \frac{V_{cbg}  (lb)}{7556.907} $	$\frac{\Psi_{h,V}}{1.000}$ $\frac{c_{a1}}{5.000}$ Table 17.5.2
$V_{b} = (7. (1_{e}$ Variables $\frac{A_{Vc} (in^{2})}{195.000}$ $\frac{\Psi_{\alpha,V}}{1.000}$ $\frac{V_{b} (lb)}{4844.171}$ Results $\varphi V_{cbg}$ Direction $V_{ua}$ Utilization Shear Breakou	$\frac{A_{Vc0} (in^2)}{112.500}$ $\frac{l_e (in)}{3.730}$ $\frac{\phi}{0.70}$ = 52 = Y- = 732 = 14 t Case 2 Controls	) $\lambda_{a} \cdot (f_{c})^{0.3} \cdot f_{c}^{0.5}$ $\frac{\Psi_{ec,V}}{1.000}$ $\frac{d_{a}  (in)}{0.625}$ 90 lb 9 lb .0%	$\frac{\Psi_{ed,V}}{0.900}$ $\frac{\lambda_a}{1.000}$	$ \frac{\Psi_{c,V}}{1.000} \\ \frac{f_{c}  (psi)}{3000} \\ \frac{V_{cbg}  (lb)}{7556.907} $	$\frac{\Psi_{h,V}}{1.000}$ $\frac{c_{a1}}{5.000}$ (in) Table 17.5.2
$V_{b} = (7.(1_{e}$ Variables $\frac{A_{Vc} (in^{2})}{195.000}$ $\frac{\Psi_{\alpha,V}}{1.000}$ $\frac{V_{b} (lb)}{4844.171}$ Results $\varphi V_{cbg}$ Direction $V_{ua}$ Utilization Shear Breakou	$\frac{A_{Vc0} (in^2)}{112.500}$ $\frac{l_e (in)}{3.730}$ $\frac{\phi}{0.70}$ = 52 = Y- = 733 = 14. t Case 2 Controls	) $\lambda_{a} \cdot (f_{c})^{0.3} \cdot f_{c}^{0.5}$ $\frac{\Psi_{ec,V}}{1.000}$ $\frac{d_{a}  (in)}{0.625}$ 90 lb 99 lb .0%	$\frac{\Psi_{ed,V}}{0.900}$ $\frac{\lambda_a}{1.000}$	$ \frac{\Psi_{c,V}}{1.000} \\ \frac{f_{c}  (psi)}{3000} \\ \frac{V_{cbg}  (Ib)}{7556.907} $	$\frac{\Psi_{h,V}}{1.000}$ $\frac{c_{a1}  (in)}{5.000}$ Table 17.5.2


Utilization

=

2.9%

24577 - Raymond Tatko

<b>Pryout Strength</b>					V	
ACI 318-19 17.7.3	3					•
Equations						1 A a
$V_{cpg} = k_{cp} \cdot N_{cpg}$					Eqn. 17.7.3.1	b
$N_{cbg} = (A_{Nc})$	/ $A_{Nc0}$ ) . $\Psi_{ec,N}$	$. \Psi_{ed,N} . \Psi_{c,N} .$	$\Psi_{cp,N}$ . N _b		Eqn. 17.6.2.1	b
$N_b = k_c \cdot \lambda_a \cdot (f_c)^{0.5} \cdot h_{ef}^{1.5}$					Eqn. 17.6.2.2	.1
Variables						
$A_{Nc}$ (in ² )	A _{Nc0} (in ² )	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{\rm cp,N}$	
259.964	99.980	1.000	1.000	1.000	1.000	
c _{ac} (in)	k _c	$\lambda_{a}$	h' _{ef} (in)	f _c (psi)	C _{amin} (in)	
10.100	21.000	1.000	3.33	3000.000	5.000	
N _b (lb)	k _{cp}	N _{cpg} (lb)	φ			
6998.950	2.000	18198.390	0.70			
Results						
$\phi V_{cpg}$	= 2	5478.00 lb			Table 17.5.2	
V _{ua}	= 7	39 lb				

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility



24577 - Raymond Tatko

7/12/2024

Reference

Eqn. 17.8.3

# 12.Interaction of Tension and Shear Loads

## ACI 318-19 17.8

## Equations

$$((((N_{ua} / \phi . N_n) + (V_{ua} / \phi . V_n)) / 1.2) \le 1.0$$

#### Variables

$N_{ua}/\phi\cdot N_n$	$\mathbf{V}_{ua}/\boldsymbol{\phi}\cdot\mathbf{V}_{n}$	
0.870	0.140	

## Results

0.870	$\leq$	1.0
Status	:	OK

### ANCHOR DESIGN CRITERIA IS SATISFIED

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility