

Natural Resources Report

Christ Community Chapel

Hudson, Ohio

Date Prepared: March 14, 2025

On Behalf Of:

Christ Community Chapel Mr. Nick Sugar, AICP

City Planner 1140 Terex Road Hudson, OH 44236

Contact:

CESO, Inc. 965 Greentree Rd, Suite 100 Pittsburgh, PA 15220 P: 412.504.9955 | F: 412.221.2267 www.cesoinc.com

Preparation Date:

March 14, 2025

CONTENTS

1.0	INTRODUCTION	1
1.1	PROJECT LOCATION AND DESCRIPTION	1
1.2	PURPOSE AND SCOPE	1
2.0	METHODOLOGY	1
2.1	PRELIMINARY DATA REVIEW	1
2.2	PHYSICAL RESOURCE INVESTIGATIONS	1
3.0	PRELIMINARY DATA REVIEW	2
3.1	TOPOGRAPHY	2
3.2	SOILS	2
3.3	WATER RESOURCES	3
4.0	FIELD OBSERVATIONS	3
5.0	CONCLUSIONS	4
6.0	REFERENCES	5

FIGURES

FIGURE 1 – TOPOGRAPHICAL LOCATION MAP FIGURE 2 – EXISTING ENVIRONMENTAL SITE CONDITIONS MAP FIGURE 3 – DELINEATED AQUATIC FEATURES MAP

APPENDICES

APPENDIX A - WETLAND DETERMINATION DATA FORMS

APPENDIX B – SITE PHOTOGRAPHS

APPENDIX C – SOIL MAP AND DESCRIPTIONS

APPENDIX D - FEDERAL EMERGENCY MANAGEMENT AGENCY FLOOD INSURANCE RATE MAP

1.0 INTRODUCTION

1.1 PROJECT LOCATION AND DESCRIPTION

CESO, Inc. (CESO) was retained by Christ Community Chapel (CCC), to perform a regulated waters delineation and prepare a report for a proposed development site located in Hudson, Summit County, Ohio. The Area of Investigation (AOI) is approximately 28.6 acres in size and consists mainly of developed land including buildings and parking lots, open lawn, and forested areas.

1.2 PURPOSE AND SCOPE

The purpose of this investigation is to identify wetlands and streams to assist in the determination of developable areas for the project. Wetlands and streams are defined by the United States Army Corps of Engineers (USACE) and the Ohio Environmental Protection Agency (OEPA) as those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas. In addition, within the Ohio Water Quality Standards {OAC 3745-1-02 (B) (87)}, a stream is defined as "a water body having a channel with well-defined bed and banks, either natural or artificial, that confine and conduct continuous or periodical flowing water."

2.0 METHODOLOGY

2.1 PRELIMINARY DATA REVIEW

Prior to the field investigation, published resource information pertaining to the AOI was gathered and reviewed. The information sources used to prepare this report include but were not limited to:

- U.S. Geological Survey (USGS) 7.5-minute quadrangle maps (Hudson Quadrangle);
- Soil Survey of Summit County, Ohio (USDA 2023);
- USFWS National Wetlands Inventory website (NWI);
- USGS National Hydrography Dataset (NHD);
- State of Ohio Water Quality Standards;
- Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (2009).

2.2 PHYSICAL RESOURCE INVESTIGATIONS

A field investigation was completed to identify and delineate potentially jurisdictional wetland boundaries in accordance with the 1987 Manual, the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Version 2.0 (Regional Supplement), and subsequent guidance. The 1987 Manual is the current Federal delineation manual used in the Clean Water Act Section 404 regulatory programs for the identification and delineation of wetlands. The approach requires positive evidence of hydrophytic vegetation, hydric soils, and wetland hydrology for the determination that an area is a wetland (Environmental Laboratory 1987). The wetland habitats identified were classified in accordance with the USFWS's "Classification of Wetlands and Deepwater Habitats of the United States" (Cowardin et al. 1979).

Streams were identified as a channel with well-defined bed and banks, either natural or artificial, that confine and conduct continuous or periodical flowing water. Streams were classified as perennial, intermittent, or ephemeral based on their permanence of flow and influence from groundwater.

Wetland boundaries and the centerline of streams were identified by consecutively numbered flags to facilitate surveying. Location data was collected using a handheld Trimble TDC150 GPS Unit. Vegetation, soil, and hydrology information for wetland and non-wetland areas were recorded on wetland field data sheets and are presented in Appendix A. Color photographs of each aquatic feature are included as Appendix B.

3.0 PRELIMINARY DATA REVIEW

3.1 TOPOGRAPHY

According to the USGS 7.5-Minute Topographic Hudson Quadrangle Map for the site in Summit County, OH, the elevation of the site is approximately 1,020-1,030 feet above mean sea level.

3.2 SOILS

Hydric soils are typical indicators of wetland habitats. A soil is considered hydric if it is saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions in the upper part (USDA-SCS 1991). Extended periods of inundation/saturation cause a chemical change in the soil, which is reflected in the soil color and physical characteristics of the soil. These properties can typically be observed during field investigations. In most cases, the soil colors are the diagnostic feature of a hydric soil. Hydric mineral soil will either be gleyed or have a low chroma matrix and/or bright mottles. A typical gleyed soil will have blue, green, or gray coloration directly below the A-horizon. A mottled soil with a low chroma matrix is usually indicative of a fluctuating water table (Wetland Training Institute Inc. 1989). See Appendix C for a comprehensive Custom soil report.

According to the Custom Soil Resource Report for Summit County, OH, soils within the AOI are summarized in the table below.

NRCS Soil Map Unit Name	Map Unit Symbol	Hydric Status	Hydric Rating
Canadice silty clay loam	Са	Predominately hydric	95
Caneadea silt loam, 2 to 6 percent slopes	СсВ	Predominately non-hydric	3
Chili gravelly loam, 6 to 12 percent slopes, moderately eroded	CoC2	Non-hydric	0
Ellsworth–Urban land complex, 6 to 18 percent slopes	EuC	Non-hydric	0
Geeburg silt loam, 6 to 12 percent slopes moderately eroded	GbC2	Non-hydric	0
Geeburg silt loam, 12 to 18 percent slopes, moderately eroded	GbD2	Non-hydric	0

Mahoning – Urban land complex, 0 to 2 percent slopes	Mn	Predominately non-hydric	5
Sebring silt loam, 0 to 2 percent slopes	Sb	Predominately hydric	92
Wheeling silt loam, 2 to 6 percent slopes	WrB	Non-hydric	0

3.3 WATER RESOURCES

3.3.1 National Wetland Inventory

CESO reviewed the USFWS National Wetlands Inventory (NWI) database, which depicted one (1) palustrine emergent wetland (PEM) within the AOI. Due to the scale of NWI maps and inaccuracies inherent in their preparation, most small wetlands and streams are not mapped or fully delineated. The NWI layer is displayed on the Existing Environmental Conditions figure.

3.3.2 National Hydrography Dataset

CESO reviewed the USGS National Hydrography Dataset (NHD), which depicted one (1) swamp/marsh and one (1) lake/pond within the AOI. Per a review of the information sources used to prepare this report, the project area is within the Mud Brook HUC-12 Subwatershed (041100020401) of the Cuyahoga HUC-8 Watershed (04110002). Due to the scale of NHD maps and inaccuracies inherent in their preparation, most small streams are not mapped or fully delineated. The NHD layer is displayed on the Existing Environmental Conditions figure.

3.3.3 State of Ohio Water Quality Standards

No streams were identified within the AOI. The AOI is eligible for coverage under OEPA's 401 Water Quality Certification for the nationwide permits, provided all other general and regional special terms and conditions are met.

4.0 FIELD OBSERVATIONS

Three (3) wetlands, two (2) seeps, and no streams were identified within the AOI. Wetland data forms are provided in Appendix A of this report. Color photographs of each aquatic feature are included in Appendix B. The features are depicted on Figure 3 Delineated Aquatic Features. Two (2) functioning constructed stormwater retention basins were also located within the AOI.

<u>Wetlands</u>

One palustrine emergent (PEM) wetland and two (2) PEM/palustrine scrub-shrub (PSS) wetland complexes were identified within this AOI. These features are summarized in the table below.

Wetland ID	Cowardin Classification	Acreage within AOI (ac)
W-1	PEM/PSS	0.10
W-2	PEM	0.04
W-3	PEM/PSS	0.15

5.0 CONCLUSIONS

CESO was retained by Christ Community Chapel (CCC) to perform a regulated waters delineation and prepare a report for a proposed development site located in Hudson, Summit County, Ohio. The AOI is approximately 28.6 acres in size and consists mainly of developed land including buildings and parking lots, open lawn, and forested areas. One (1) PEM and two (2) PEM/PSS wetlands, two (2) seeps, and no streams were identified within the AOI at the time of the site visit. Two (2) functioning constructed stormwater retention basins were also located within the AOI.

The results described in this report are the professional opinion of CESO based off of field observations at the time of the site visit on February 27, 2025. The USACE is the only agency with regulatory authority over the jurisdictional determination process.

6.0 REFERENCES

Cowardin, L.M., et.al. 1979. *Classification of Wetlands and Deepwater Habitats of the United States*, Biological Services Program USFWS/OBS – 79/31. U.S. Fish and Wildlife Service. Washington, D.C.

Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*, Technical Report Y-87-1. US Army Engineer Waterways Experiment Station. Vicksburg, MS.

Faust, ME., 1980. *Field Guide to the Grasses, Sedges and Rushes of the United States*. Dover Publications, Inc., N.Y. 10014.

Gray, H. H., 2000, Physiographic divisions of Indiana: Indiana Geological Survey Special Report 61, 15 p.; available at Indiana Geological Survey Bookstore

Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. *The National Wetland Plant List*: 2016 wetland ratings. Phytoneuron 2016-30: 1-17. Published 28 April 2016. ISSN 2153 733X

Miller, R.W. and Gardiner, D.T. 1998. Soils In Our Environment, 8th Edition. Prentice Hall, New Jersey, 736p.

Munsell Soil Color Charts. 1998. Revised Washable Edition, Gretag Macbeth, New York.

Newcomb, L. 1977. Newcomb's Wildflower Guide. Little, Brown and Co., Boston, MA.

Niering W.A. 1998. National Audubon Society Nature Guides: Wetlands. Alfred A. Knopf, New York, 638p.

Niering W.A. 1998. National Audubon Society Field Guide to North American Wildflowers: Eastern Region. Alfred A. Knopf, New York, 638p.

Petrides, G.A. 1958. A Field Guide to Trees and Shrubs. Houghton Mifflin Company, Boston, MA.

Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, CO.

Tiner, R.W. 1999. Wetland Indicators: A Guide to Wetland Identification, Delineation, Classification, and Mapping. Lewis Publishers, New York.

U.S. Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region (Version 2.0), ed. J.S. Wakely, R.W. Lichvar, and C.V. Noble. ERDC/EL TR-10-16. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

USDA, Soil Conservation Service. 1991. *Hydric Soils of the United States*. Publication Number 1491. Washington, DC.

USDA, NRCS. 2018. Field Indicators of Hydric Soils in the United States, Version 6.0. G.W. Hurt and L.M. Vasilas (eds.). USDA, NRCS, in cooperation with the National Technical Committee for Hydric Soils.

U.S. Fish and Wildlife Service. 2018. National Wetlands Inventory website. U.S. Department of the Interior, Fish and Wildlife Service, Washington, D.C. http://www.fws.gov/wetlands/

FIGURE 1 – TOPOGRAPHICAL LOCATION MAP

Date: 3/13/2025 By: K. Hamlin

FIGURE 2 - EXISTING ENVIRONMENTAL CONDITIONS MAP

Date: 3/13/2025 By: K. Hamlin

FIGURE 3 – DELINEATED AQUATIC FEATURES

Date: 3/13/2025 By: K. Hamlin

APPENDIX A – WETLAND DETERMINATION DATA FORMS

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcentral and Nort See ERDC/EL TR-12-1; the proponent agency is CECW-	
Project/Site: Christ Community Chapel City/Co	ounty: Summit County Sampling Date: 2/27/2025
Applicant/Owner: CESO, Inc.	State: OH Sampling Point: W-1
Investigator(s): Kerry Hamlin, Chris Winkler	Section, Township, Range: N/A
Landform (hillside, terrace, etc.): Depression Local relief (c	oncave, convex, none): Concave Slope %: 2
Subregion (LRR or MLRA): LRR R, MLRA 139 Lat: 41.2298973	Long: -81.4845494 Datum: NAD 83
Soil Map Unit Name: Caneadea silt loam, 2 to 6 percent slopes (CcB)	NWI classification: None
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes No X (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrologysignificantly disturbed?	Are "Normal Circumstances" present? Yes X No
Are Vegetation, Soil, or Hydrology naturally problematic?	(If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sampling	point locations, transects, important features, etc.
Hydric Soil Present? Yes X No with	e Sampled Area in a Wetland? Yes X No s, optional Wetland Site ID:
Remarks: (Explain alternative procedures here or in a separate report.) Significant recent rainfall and snowmelt resulting in saturation, high water table, an indicators for wetland hydrology.	d surface water throughout AOI. These factors were excluded as
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) X Water-Stained Leaves (B9)	Drainage Patterns (B10)
High Water Table (A2) Aquatic Fauna (B13) Saturation (A3) Marl Deposits (B15)	Moss Trim Lines (B16) Dry-Season Water Table (C2)
X Water Marks (B1) Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2) X Oxidized Rhizospheres on Livin	
Drift Deposits (B3) Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent Iron Reduction in Tilled	Soils (C6) X Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes X No Depth (inches): 3	-
Water Table Present? Yes X No Depth (inches): 0 Saturation Present? Yes X No Depth (inches): 0	─
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous i	ispections), if available:
Remarks:	

Sampling Point: W-1

Tree Stratum (Distaire: 20)	Absolute	Dominant	Indicator	Deminence Test werkeheet
Tree Stratum (Plot size: 30')	% Cover	Species?	Status	Dominance Test worksheet:
1. <u>Alnus incana</u>	10	Yes	FACW	Number of Dominant Species
2.				That Are OBL, FACW, or FAC: <u>8</u> (A)
3				Total Number of Dominant
4				Species Across All Strata: 8 (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: 100.0% (A/B)
7				Prevalence Index worksheet:
	10	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species x 1 =2
1. Ulmus rubra	15	Yes	FAC	FACW species 63 x 2 = 126
2. Ulmus americana	15	Yes	FACW	FAC species 15 x 3 = 45
3. Salix discolor	10	Yes	FACW	FACU species 0 x 4 = 0
4.				UPL species $0 \times 5 = 0$
5.				Column Totals: 90 (A) 183 (B)
6.				Prevalence Index = $B/A = 2.03$
7.				Hydrophytic Vegetation Indicators:
	40	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5')				X 2 - Dominance Test is >50%
1. Onoclea sensibilis	10	Yes	FACW	X 3 - Prevalence Index is ≤3.0 ¹
2. Boehmeria cylindrica	10	Yes	OBL	4 - Morphological Adaptations ¹ (Provide supporting
3. Cornus sericea	10	Yes	FACW	data in Remarks or on a separate sheet)
4. Dryopteris carthusiana	8	Yes	FACW	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Geum canadense	2	No	OBL	
6.				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
				Definitions of Vegetation Strata:
8.				_
0				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10.				
11.				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
				and greater than of equal to 5.20 it (1 iii) tail.
12		Tatal Osuar		Herb – All herbaceous (non-woody) plants, regardless
	40	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30')				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				Hydrophytic
3				Vegetation
4				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)									
Depth	Matrix			x Featur		- 2	- ·	D	
(inches)	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks	
0-12	10YR 4/1	85	10YR 5/8	15	<u> </u>	M	Loamy/Clayey	Prominent redox concentrations	
12-20	10YR 4/1	85	10YR 5/8	10	<u> </u>	M	Loamy/Clayey	Prominent redox concentrations	
			2.5YR 4/8	5	C	M		Prominent redox concentrations	
¹ Type: C=C	oncentration, D=Depl	etion, RI	M=Reduced Matrix, M	/IS=Mas	ked Sand	d Grains.		PL=Pore Lining, M=Matrix.	
Hydric Soil								or Problematic Hydric Soils ³ :	
Histosol	. ,		Dark Surface ('				uck (A10) (LRR K, L, MLRA 149B)	
	oipedon (A2)		Polyvalue Belo		ce (S8) (I	LRR R,		ucky Peat or Peat (S3) (LRR K, L, R)	
	istic (A3)		MLRA 149B	,				ie Below Surface (S8) (LRR K, L)	
Hydroge	en Sulfide (A4)		Thin Dark Surfa				149B) Thin Dai	rk Surface (S9) (LRR K, L)	
Stratified	d Layers (A5)		High Chroma S	Sands (S	611) (LRF	R K, L)	Iron-Mar	nganese Masses (F12) (LRR K, L, R)	
Depleted	d Below Dark Surface	e (A11)	Loamy Mucky	Mineral	(F1) (LR	R K, L)	Piedmor	nt Floodplain Soils (F19) (MLRA 149B)	
Thick Da	ark Surface (A12)		Loamy Gleyed	Matrix (F2)		Red Par	ent Material (F21) (outside MLRA 145)	
Mesic S	podic (A17)		X Depleted Matri	x (F3)			Very Sha	allow Dark Surface (F22)	
(MLR	A 144A, 145, 149B)		Redox Dark Su	urface (F	6)		Other (E	xplain in Remarks)	
Iron Mor	nosulfide (A18)		Depleted Dark	Surface	(F7)			. ,	
	lucky Mineral (S1)		X Redox Depress		. ,				
	Bleyed Matrix (S4)		 Marl (F10) (LR	-	- /		³ Indica	ators of hydrophytic vegetation and	
	Redox (S5)		Red Parent Ma	-	21) (MI F	RA 145)	wetland hydrology must be present,		
·	Matrix (S6)				21) (11121	(110)		ess disturbed or problematic.	
Restrictive	Layer (if observed):								
Type:									
Depth (ii	nches):						Hydric Soil Prese	nt? Yes <u>X</u> No	
Remarks:									

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R	OMB Control #: 0710-0024, Exp: 9/30/2027 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)		
Project/Site: Christ Community Chapel City/County: Summit Cou	nty Sampling Date: 2/27/2025		
Applicant/Owner: CESO, Inc.	State:OHSampling Point:W-2		
Investigator(s): Kerry Hamlin, Chris Winkler Section, Townshi			
Landform (hillside, terrace, etc.): Depression Local relief (concave, convex, not			
Subregion (LRR or MLRA): LRR R, MLRA 139 Lat: 41.2299903 Long: -81.4			
	NWI classification: None		
	No X (If no, explain in Remarks.)		
	ircumstances" present? Yes X No		
	lain any answers in Remarks.)		
SUMMARY OF FINDINGS – Attach site map showing sampling point location	s, transects, important features, etc.		
Hydrophytic Vegetation Present? Yes X No Is the Sampled Area Hydric Soil Present? Yes X No within a Wetland? Wetland Hydrology Present? Yes X No If yes, optional Wetland	Yes X No Site ID:		
Remarks: (Explain alternative procedures here or in a separate report.) Significant recent rainfall and snowmelt resulting in saturation, high water table, and surface water thr indicators for wetland hydrology.	roughout AOI. These factors were excluded as		
HYDROLOGY			
	ondary Indicators (minimum of two required)		
	Surface Soil Cracks (B6)		
	Drainage Patterns (B10)		
	Moss Trim Lines (B16) Dry-Season Water Table (C2)		
	Crayfish Burrows (C8)		
	Stunted or Stressed Plants (D1)		
Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6)	X Geomorphic Position (D2)		
	Shallow Aquitard (D3)		
	Microtopographic Relief (D4)		
Sparsely Vegetated Concave Surface (B8) X	FAC-Neutral Test (D5)		
Field Observations:			
Surface Water Present? Yes X No Depth (inches): 0.5			
Water Table Present? Yes X No Depth (inches): 0 Saturation Present? Yes X No Depth (inches): 0 Wetland Hyritic	drology Present? Yes X No		
(includes capillary fringe)			
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if availa	able:		
Remarks:			

I

Sampling Point: W-2

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30')	% Cover	Species?	Status	Dominance Test worksheet:
1				Number of Dominant Species
2.				That Are OBL, FACW, or FAC:(A)
3				Total Number of Dominant
4.				Species Across All Strata: 1 (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: <u>100.0%</u> (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species x 1 =
1				FACW species 100 x 2 = 200
2.				FAC species $0 \times 3 = 0$
3.				FACU species 0 x 4 = 0
4.				UPL species $0 \times 5 = 0$
5.				Column Totals: 100 (A) 200 (B)
6				Prevalence Index = B/A = 2.00
7				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5')				X 2 - Dominance Test is >50%
1. Phragmites australis	100	Yes	FACW	X 3 - Prevalence Index is $\leq 3.0^1$
			17.00	4 - Morphological Adaptations ¹ (Provide supporting
2				data in Remarks or on a separate sheet)
				Problematic Hydrophytic Vegetation ¹ (Explain)
5				
· · · · · · · · · · · · · · · · · · ·				¹ Indicators of hydric soil and wetland hydrology must
6.				be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	100	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30')				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				Hydrophytic
3				Vegetation
4.				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Matrix Redox Features										
Depth (inches)	Matrix	0/				Loc ²	Touturo	П	omorko	
(inches)	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹		Texture		emarks	
	10YR 2/1	95	2.5YR 3/6	5	<u> </u>	<u>M</u>	Loamy/Clayey	Prominent re		
4-20	10YR 5/1	90	10YR 6/8	10	<u> </u>	M	Loamy/Clayey	Prominent re	dox conc	entrations
							·			
							·			
¹ Type: C=Co	oncentration, D=Dep	letion, RM	I=Reduced Matrix, N	/IS=Mas	ked Sand	Grains.	² Location: P	L=Pore Lining, N	/I=Matrix.	
Hydric Soil I	ndicators:						Indicators for	or Problematic I	Hydric So	oils ³ :
Histosol			Dark Surface (-				ıck (A10) (LRR K		-
	ipedon (A2)		Polyvalue Belo		ce (S8) (I	LRR R,		icky Peat or Peat		
Black His			MLRA 149B	,				e Below Surface		
	n Sulfide (A4) Layers (A5)		Thin Dark Surf High Chroma S		-			rk Surface (S9) (I nganese Masses		
	Below Dark Surface	→ (A11)	Loamy Mucky					nt Floodplain Soil		-
·	rk Surface (A12)	5 (711)	Loamy Gleyed			ιn, Ε)		ent Material (F21		-
	odic (A17)		X Depleted Matri		,			allow Dark Surfac		
	A 144A, 145, 149B)		X Redox Dark Su		6)			xplain in Remark		
Iron Mon	osulfide (A18)		Depleted Dark	Surface	(F7)					
	ucky Mineral (S1)		Redox Depress	sions (F8	8)					
· ·	leyed Matrix (S4)		Marl (F10) (LR				³ Indicators of hydrophytic vegetation and			
	edox (S5)		Red Parent Material (F21) (MLRA 145)			wetland hydrology must be present, unless disturbed or problematic.				
Stripped	Matrix (S6)						unle	ess disturbed or p	problemat	liC.
	ayer (if observed):									
Type:										
Depth (ir	iches):						Hydric Soil Prese	nt? Yes	<u>X</u>	No
Remarks:										
1										

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcentral and No See ERDC/EL TR-12-1; the proponent agency is CECV	-	OMB Control #: 0710-0024, Exp: 9/30/2027 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)
Project/Site: Christ Community Chapel City	//County: <u>Summit Co</u>	unty Sampling Date: 2/27/2025
Applicant/Owner: CESO, Inc.		State: OH Sampling Point:3
Investigator(s): Kerry Hamlin, Chris Winkler	Section, Townsl	hip, Range: N/A
Landform (hillside, terrace, etc.): Depression Local relief	f (concave, convex, n	one): Concave Slope %: 2
Subregion (LRR or MLRA): LRR R, MLRA 139 Lat: 41.2310354	Long: -81	I.4824537 Datum: NAD 83
Soil Map Unit Name: Wheeling silt loam, 2 to 6 percent slopes (WrB)		NWI classification: None
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes	No X (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrologysignificantly disturbed?	? Are "Normal (Circumstances" present? Yes X No
Are Vegetation, Soil, or Hydrology naturally problematic?		plain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sampli		
Hydric Soil Present? Yes X No w	the Sampled Area within a Wetland? yes, optional Wetlan	Yes X No d Site ID:
Remarks: (Explain alternative procedures here or in a separate report.) Significant recent rainfall and snowmelt resulting in saturation, high water table indicators for wetland hydrology.	, and surface water th	nroughout AOI. These factors were excluded as
HYDROLOGY		
Wetland Hydrology Indicators:	Se	condary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)		_Surface Soil Cracks (B6)
Surface Water (A1) X Water-Stained Leaves (B9)		Drainage Patterns (B10)
High Water Table (A2) Aquatic Fauna (B13) Saturation (A3) Marl Deposits (B15)		_Moss Trim Lines (B16) Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)
Sediment Deposits (B2) X Oxidized Rhizospheres on Li	ving Roots (C3)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)Presence of Reduced Iron (0	,	_Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent Iron Reduction in Till	ed Soils (C6) X	_ Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Surface (C7) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)		_Shallow Aquitard (D3) Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	x	FAC-Neutral Test (D5)
Field Observations:	<u></u>	
Surface Water Present? Yes X No Depth (inches):	1	
	0	
	0 Wetland H	ydrology Present? Yes X No
(includes capillary fringe)	·	ilekte.
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previou	is inspections), il ava	
Remarks:		

Sampling Point: W-3

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30')	% Cover	Species?	Status	Dominance Test worksheet:
1. Populus deltoides	10	Yes	FAC	Number of Dominant Species
2.				That Are OBL, FACW, or FAC: 4 (A)
3.				
A				Total Number of DominantSpecies Across All Strata:44
5				
				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: 100.0% (A/B)
7				Prevalence Index worksheet:
	10	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species <u>5</u> x 1 = <u>5</u>
1. Cornus amomum	20	Yes	FACW	FACW species 90 x 2 = 180
2. Cornus sericea	15	Yes	FACW	FAC species 35 x 3 = 105
3. Rosa palustris	5	No	OBL	FACU species 0 x 4 = 0
				· ·
4				UPL species $0 \times 5 = 0$
5				Column Totals: <u>130</u> (A) <u>290</u> (B)
6				Prevalence Index = B/A = 2.23
7				Hydrophytic Vegetation Indicators:
	40	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
<u>Herb Stratum</u> (Plot size: 5')				X 2 - Dominance Test is >50%
1. Phalaris arundinacea	50	Yes	FACW	X 3 - Prevalence Index is $\leq 3.0^1$
	10	No	FAC	4 - Morphological Adaptations ¹ (Provide supporting
				data in Remarks or on a separate sheet)
3. Apocynum cannabinum	10	No	FAC	
4. Onoclea sensibilis	5	No	FACW	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Geum canadense	5	No	FAC	¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8.				Tree Maadu plante 2 in (7.0 and) an mana in
9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
9 10				
				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	80	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30')				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2.				
				Hydrophytic
3 4.				Vegetation Present? Yes X No
ч. 				
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

Depth Matrix Redox Features (inches) Color (moist) % Color (moist) % Type Loc [*] Texture Remarks 0-12 10YR 6/2 90 10YR 5/8 10 C M Loamy/Clayey Prominent redox concent 12-14 10YR 5/2 80 10YR 5/8 20 C M Loamy/Clayey Prominent redox concent 14-17 10YR 5/2 80 10YR 6/6 15 C M Loamy/Clayey Prominent redox concent 17-20 10YR 5/2 85 10YR 6/6 15 C M Loamy/Clayey Prominent redox concent	Color (moi 0-12 10YR 6/2 12-14 10YR 5/2 14-17 10YR 5/2	st) %		Sutur					
12-14 10YR 5/2 80 10YR 5/8 20 C M Loamy/Clayey Prominent redox concent 14-17 10YR 5/2 80 10YR 5/6 20 C PL/M Loamy/Clayey Prominent redox concent 17-20 10YR 5/2 85 10YR 6/6 15 C M Loamy/Clayey Prominent redox concent 17-20 10YR 5/2 85 10YR 6/6 15 C M Loamy/Clayey Prominent redox concent 17-20 10YR 5/2 85 10YR 6/6 15 C M Loamy/Clayey Prominent redox concent 10YR 5/2 85 10YR 6/6 15 C M Loamy/Clayey Prominent redox concent 117.20 10YR 5/2 85 10YR 6/6 15 C M Loamy/Clayey Prominent redox concent 17.20 10YR 5/2 85 10YR 6/6 15 C M Loamy/Clayey Prominent redox concent 17.20 10YR 5/2 10 10 10	12-14 10YR 5/2 14-17 10YR 5/2	2 90		%		Loc ²	Texture	Remai	rks
14-17 10YR 5/2 80 10YR 5/6 20 C PL/M Loamy/Clayey Prominent redox concent 17-20 10YR 5/2 85 10YR 6/6 15 C M Loamy/Clayey Prominent redox concent 17-20 10YR 5/2 85 10YR 6/6 15 C M Loamy/Clayey Prominent redox concent 17-20 10YR 5/2 85 10YR 6/6 15 C M Loamy/Clayey Prominent redox concent 17-20 10YR 5/2 85 10YR 6/6 15 C M Loamy/Clayey Prominent redox concent 100 10 </td <td>14-17 10YR 5/2</td> <td></td> <td>10YR 5/8</td> <td>10</td> <td>C</td> <td>M</td> <td>Loamy/Clayey</td> <td>Prominent redox of</td> <td>concentrations</td>	14-17 10YR 5/2		10YR 5/8	10	C	M	Loamy/Clayey	Prominent redox of	concentrations
17-20 10YR 5/2 85 10YR 6/6 15 C M Loamy/Clayey Prominent redox concenters of the second s		2 80	10YR 5/8	20	C	M	Loamy/Clayey	Prominent redox of	concentrations
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soli Indicators: Indicators for Problematic Hydric Soli Histic Epipedon (A2) Dark Surface (S7) Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Mucky Mineral (F1) Mesic Spodic (A17) X Depleted Dark Surface (F6) Mesic Spodic (A17) X Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Redox Depressions (F8) Sandy Gleyed Matrix (S4) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 1445) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 1445) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 1445)		2 80	10YR 5/6	20	С	PL/M	Loamy/Clayey	Prominent redox of	concentrations
Image:	17-20 10YR 5/2	2 85	10YR 6/6	15	c	M	Loamy/Clayey	Prominent redox of	concentrations
Hydric Soil Indicators: Indicators for Problematic Hydric Soils Histosol (A1) Dark Surface (S7) 2 cm Muck (A10) (LRR K, L, MLRA Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, 5 cm Mucky Peat or Peat (S3) (LRR Black Histic (A3) MLRA 149B) Polyvalue Below Surface (S9) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (ML Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside I Mesic Spodic (A17) X Depleted Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) X Redox Dapressions (F8) Sandy Gleyed Matrix (S6) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetatic wetland hydrology must be pressurface (S6) Restrictive Layer (if observed): Type:							·		
Hydric Soil Indicators: Indicators for Problematic Hydric Soils Histosol (A1) Dark Surface (S7) 2 cm Muck (A10) (LRR K, L, MLRA Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, 5 cm Mucky Peat or Peat (S3) (LRR Black Histic (A3) MLRA 149B) Polyvalue Below Surface (S9) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (ML Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside I Mesic Spodic (A17) X Depleted Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) X Redox Dapressions (F8) Sandy Redox (S5) Red Parent Material (F21) (MLRA 1445) Silndicators of hydrophytic vegetatic wetland hydrology must be pressurface (S6) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 1445) wetland hydrology must be pressurface or problematic. Type:							·		
Histosol (A1) Dark Surface (S7) 2 cm Muck (A10) (LRR K, L, MLRA Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, 5 cm Mucky Peat or Peat (S3) (LRR Black Histic (A3) MLRA 149B) Polyvalue Below Surface (S9) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (ML Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside I Mesic Spodic (A17) X Depleted Matrix (F3) Very Shallow Dark Surface (F22) (MLRA 144A, 145, 149B) Redox Dark Surface (F7) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) X Redox Depressions (F8) Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) alndicators of hydrophytic vegetation wetland hydrology must be pressurface. Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) wetland hydrology must be pressurface. Type:	ype: C=Concentration, D	=Depletion, RM	 1=Reduced Matrix, N	//S=Mask	 ked Sanc	Grains.	²Location: P		atrix.
Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Mesic Spodic (A17) X Mesic Spodic (A17) X Depleted Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) X Red Parent Material (F21) (MLRA 145) 3 ¹ Indicators of hydrophytic vegetatic wetland hydrology must be press unless disturbed or problematic. Type: Type:	-							•	
Black Histic (A3) MLRA 149B) Polyvalue Below Surface (S8) (LRR Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (ML Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside I Mesic Spodic (A17) X Depleted Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) X Redox Depressions (F8) Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) Sandy redox (S5) Stripped Matrix (S6) ³ Indicators of hydrophytic vegetatic Restrictive Layer (if observed): Type:					(00) (,
Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (ML Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside I Mesic Spodic (A17) X Depleted Matrix (F3) Very Shallow Dark Surface (F22) (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) X Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) ³ Indicators of hydrophytic vegetation Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) wetland hydrology must be pressunces Type:					ce (S8) (I	LRR R,			
Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (ML Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside I Mesic Spodic (A17) X Depleted Matrix (F3) Very Shallow Dark Surface (F22) (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) X Redox Depressions (F8) Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) wetland hydrology must be preserved): wetland hydrology must be preserved): Type:				,					
Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (ML Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside I Mesic Spodic (A17) X Depleted Matrix (F3) Very Shallow Dark Surface (F22) (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Mucky Mineral (S1) X Redox Depressions (F8) Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) wetland hydrology must be pressure of hydrophytic vegetation wetland hydrology must be pressure of problematic. Type:					-				-
Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside I Mesic Spodic (A17) X Depleted Matrix (F3) Very Shallow Dark Surface (F22) (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) X Redox Depressions (F8) Sandy Gleyed Matrix (S4) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) wetland hydrology must be pressure on problematic. Restrictive Layer (if observed): Type:		urfood(A11)						-	
Mesic Spodic (A17) X Depleted Matrix (F3) Very Shallow Dark Surface (F22) (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) X Redox Depressions (F8) Sandy Gleyed Matrix (S4) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) wetland hydrology must be pressure disturbed or problematic. Restrictive Layer (if observed): Type:						κ κ, μ)			
(MLRA 144A, 145, 149B) Redox Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) X Redox Depressions (F8) Sandy Gleyed Matrix (S4) Marl (F10) (LRR K, L) Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) Stripped Matrix (S6) wetland hydrology must be preserved): Type:		2)		-	-2)				
Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) X Redox Depressions (F8) Sandy Gleyed Matrix (S4) Marl (F10) (LRR K, L) Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) Stripped Matrix (S6) wetland hydrology must be preserved): Type:		(0.5)							22)
Sandy Mucky Mineral (S1) X Redox Depressions (F8) Sandy Gleyed Matrix (S4) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation wetland hydrology must be pressure of hydrophytic vegetation wetland hydrology must be pressure of hydrophytic vegetation. Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) wetland hydrology must be pressure of hydrophytic vegetation. Stripped Matrix (S6) Restrictive Layer (if observed): unless disturbed or problematic. Type:		49B)		-	-		Other (E	xplain in Remarks)	
Sandy Gleyed Matrix (S4) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation wetland hydrology must be pressure of the problematic. Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) wetland hydrology must be pressure of the problematic. Stripped Matrix (S6) Restrictive Layer (if observed): unless disturbed or problematic. Type:	_	2.42	·		• •				
Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) wetland hydrology must be preserved in the p		-			3)		3		
Stripped Matrix (S6) unless disturbed or problematic. Restrictive Layer (if observed): Type:		54)		-					-
Restrictive Layer (if observed): Type:			Red Parent Ma	aterial (F	21) (MLF	RA 145)			•
Туре:	Stripped Matrix (S6)						unle	ess disturbed or proble	ematic.
	estrictive Layer (if obser	ved):							
Dopth (inches):									
	Depth (inches):						Hydric Soil Prese	nt? Yes <u>X</u>	No
Remarks:	emarks:								

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R	OMB Control #: 0710-0024, Exp: 9/30/2027 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)
Project/Site: Christ Community Chapel City/County: Summit Cou	nty Sampling Date: 2/27/2025
Applicant/Owner: CESO, Inc.	
Investigator(s): Kerry Hamlin, Chris Winkler Section, Townshi	ip, Range: N/A
Landform (hillside, terrace, etc.): Flat Local relief (concave, convex, no	ne): None Slope %: 0
Subregion (LRR or MLRA): LRR R, MLRA 139 Lat: 41.2321841 Long: -81.	
Soil Map Unit Name: Ellsworth–Urban land complex, 6 to 18 percent slopes (EuC)	NWI classification: None
Are climatic / hydrologic conditions on the site typical for this time of year? Yes	No X (If no, explain in Remarks.)
	ircumstances" present? Yes X No
	lain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sampling point location	
Hydrophytic Vegetation Present? Yes No X Is the Sampled Area Hydric Soil Present? Yes No X within a Wetland? Wetland Hydrology Present? Yes No X If yes, optional Wetland	Yes <u>No X</u> Site ID:
Remarks: (Explain alternative procedures here or in a separate report.) Significant recent rainfall and snowmelt resulting in saturation, high water table, and surface water thr indicators for wetland hydrology.	roughout AOI. These factors were excluded as
HYDROLOGY	
Primary Indicators (minimum of one is required; check all that apply)	ondary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
(includes capillary fringe)	drology Present? Yes <u>No X</u>
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if availa	able:
Remarks:	

Sampling Point: UPL-1

	Absolute	Dominant	Indicator	
<u>Tree Stratum</u> (Plot size: <u>30'</u>)	% Cover	Species?	Status	Dominance Test worksheet:
1				Number of Dominant Species
2				That Are OBL, FACW, or FAC:(A)
3				Total Number of Dominant
4				Species Across All Strata: 1 (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: 0.0% (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of:Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species x 1 =
1				FACW species 0 x 2 = 0
2				FAC species x 3 =
3				FACU species 106 x 4 = 424
4.				UPL species x 5 =
5				Column Totals: 106 (A) 424 (B)
6				Prevalence Index = B/A =4.00
7				Hydrophytic Vegetation Indicators:
	;	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5')				2 - Dominance Test is >50%
1. Poa pratensis	98	Yes	FACU	3 - Prevalence Index is ≤3.0 ¹
2. Glechoma hederacea	5	No	FACU	4 - Morphological Adaptations ¹ (Provide supporting
3. Trifolium repens	3	No	FACU	data in Remarks or on a separate sheet)
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	106	=Total Cover		of size, and woody plants less than 3.28 ft tall.
<u>Woody Vine Stratum</u> (Plot size: <u>30'</u>)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				Line and a star
3				Hydrophytic Vegetation
4				Present? Yes No X
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

SOIL

Depth	Matrix	to the de		x Featu			onfirm the absence of i	nuicators.)	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Rema	ırks
0-16	10YR 4/3	100					Loamy/Clayey		
16-20	10YR 4/3	97	10YR 5/8	3	С	М	Loamy/Clayey	Prominent redox	concentrations
		·			·				
					·				
	oncentration, D=Dep	letion, RN	I=Reduced Matrix, N	MS=Mas	sked San	d Grains.		Pore Lining, M=Ma	
Hydric Soil			Daula Orufa a d	(07)				Problematic Hydi	
Histosol			Dark Surface ((00)			(A10) (LRR K, L ,	,
	pipedon (A2)		Polyvalue Belo		ice (58) (LRR R,		y Peat or Peat (S3	
	istic (A3)		MLRA 149B	,				Below Surface (S8	, ,
	en Sulfide (A4)		Thin Dark Surf		, ,		,	Surface (S9) (LRR	
	d Layers (A5)		High Chroma	-				anese Masses (F12	
	d Below Dark Surface	e (A11)	Loamy Mucky			R K, L)		Floodplain Soils (F	
	ark Surface (A12)		Loamy Gleyed		(F2)			t Material (F21) (o	
	podic (A17)		Depleted Matr					ow Dark Surface (F	-22)
-	RA 144A, 145, 149B)		Redox Dark S	•	,		Other (Exp	lain in Remarks)	
	nosulfide (A18)		Depleted Dark		• •				
	/lucky Mineral (S1)		Redox Depres				2		
	Gleyed Matrix (S4)		Marl (F10) (LR					rs of hydrophytic v	-
Sandy F	Redox (S5)		Red Parent Ma	aterial (F	21) (ML	RA 145)		d hydrology must l	•
Stripped	d Matrix (S6)						unless	disturbed or probl	ematic.
Restrictive	Layer (if observed):								
Type:									
Depth (i	nches):						Hydric Soil Present?	Yes	<u>No X</u>
Remarks:									
1									

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R	OMB Control #: 0710-0024, Exp: 9/30/2027 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)
Project/Site: Christ Community Chapel City/County: Summit Cou	nty Sampling Date: 2/27/2025
Applicant/Owner: CESO, Inc.	State:OHSampling Point:UPL-2
Investigator(s): Kerry Hamlin, Chris Winkler Section, Townshi	p, Range: N/A
Landform (hillside, terrace, etc.): Flat Local relief (concave, convex, not	ne): None Slope %: 0
Subregion (LRR or MLRA): LRR R, MLRA 139 Lat: 41.2307300 Long: -81.4	4860136 Datum: NAD 83
Soil Map Unit Name: Caneadea silt loam, 2 to 6 percent slopes (CcB)	NWI classification: None
Are climatic / hydrologic conditions on the site typical for this time of year? Yes	No X (If no, explain in Remarks.)
———	rcumstances" present? Yes X No
	lain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sampling point location	s, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No X Is the Sampled Area Hydric Soil Present? Yes No X within a Wetland? Wetland Hydrology Present? Yes No X If yes, optional Wetland	Yes <u>No X</u> Site ID:
Remarks: (Explain alternative procedures here or in a separate report.) Significant recent rainfall and snowmelt resulting in saturation, high water table, and surface water thr indicators for wetland hydrology.	roughout AOI. These factors were excluded as
HYDROLOGY	
Primary Indicators (minimum of one is required; check all that apply)	ondary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Field Observations: Surface Water Present? Yes X No 0.5 Depth (inches):	drology Present? Yes <u>No X</u> able:
Remarks:	

Sampling Point: UPL-2

_	· · · · · · · · · · · · · · · · · · ·	Absolute	Dominant	Indicator		-
	e <u>Stratum</u> (Plot size: <u>30'</u>)	% Cover	Species?	Status	Dominance Test worksheet:	
1.	Fraxinus americana	25	Yes	FACU	Number of Dominant Species	
2.	Quercus imbricaria	20	Yes	FACU	That Are OBL, FACW, or FAC:3 (A)	
3.	Gleditsia triacanthos	20	Yes	FAC	Total Number of Dominant	
4.	Quercus rubra	20	Yes	FACU	Species Across All Strata: 10 (B)	
5. 6.	Acer saccharinum	5	No	FACW	Percent of Dominant Species That Are OBL, FACW, or FAC: 30.0% (A/B))
7.					Prevalence Index worksheet:	
		90	=Total Cover		Total % Cover of: Multiply by:	
Sap	ling/Shrub Stratum (Plot size: 15')				OBL species 0 $x 1 = 0$	
1.	Fraxinus americana	30	Yes	FACU	FACW species $5 \times 2 = 10$	
2.	Ligustrum vulgare	10	Yes	FACU	FAC species 30 x 3 = 90	
3.					FACU species 109 x 4 = 436	
4.					UPL species 3 x 5 = 15	
5.					Column Totals: 147 (A) 551 (B))
6.					Prevalence Index = B/A = 3.75	
7.					Hydrophytic Vegetation Indicators:	_
••		40	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation	
Her	<u>b Stratum</u> (Plot size: 5')				2 - Dominance Test is >50%	
1.	Toxicodendron radicans	7	Yes	FAC	3 - Prevalence Index is ≤3.0 ¹	
2.	Potentilla canadensis	3	Yes	UPL	4 - Morphological Adaptations ¹ (Provide supportin	na
3.	Aster sp.	3	Yes		data in Remarks or on a separate sheet)	9
4.	Geum canadense	3	Yes	FAC	Problematic Hydrophytic Vegetation ¹ (Explain)	
5.	Trifolium repens	2	No	FACU		
6.	Glechoma hederacea	2	No	FACU	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.	
7.				17.00	Definitions of Vegetation Strata:	_
7. 8.						
9.					Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.	
10.						
11.					Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.	
12.					Herb – All herbaceous (non-woody) plants, regardless	3
		20	=Total Cover		of size, and woody plants less than 3.28 ft tall.	
Wo	ody Vine Stratum (Plot size: 30')				Woody vines – All woody vines greater than 3.28 ft ir	า
1.					height.	
2.					l hudeo se la dia	
3.					Hydrophytic Vegetation	
4.					Present? Yes No X	
			=Total Cover			
Rer	narks: (Include photo numbers here or on a sepa	rate sheet.)				
		,				

SOIL

		to the dep				ator or c	onfirm the absence of i	ndicators.)	
Depth (inches)	Matrix Color (moist)	%		x Featur		Loc ²	Touturo	Remark	
(inches)			Color (moist)		Туре	LOC	Texture	Reman	(5
	10YR 4/2	100					Loamy/Clayey		
5-17	10YR 4/3	100					Loamy/Clayey		
	10YR 5/2	90	10YR 6/8	10	<u> </u>	<u>M</u>	Loamy/Clayey	Prominent redox co	oncentrations
				_					
17 0.0									
'Type: C=C Hydric Soil	oncentration, D=Dep	letion, RM=	Reduced Matrix, N	//S=Mas	ked San	d Grains.		Pore Lining, M=Mat	
Histosol			Dark Surface (S7)				(A10) (LRR K, L, N	
	pipedon (A2)	-	Polyvalue Belo	,	ce (S8) (LRR R.		(y Peat or Peat (S3)	,
	istic (A3)	-	MLRA 149B		() (,		Below Surface (S8)	
	en Sulfide (A4)		Thin Dark Surf	,) (LRR R	. MLRA		Surface (S9) (LRR #	
	d Layers (A5)	-	High Chroma	•	, ,		,	anese Masses (F12)	
	d Below Dark Surface	- (A11)	Loamy Mucky					Floodplain Soils (F19	
	ark Surface (A12)	-	Loamy Gleyed			, _/		t Material (F21) (out	
	podic (A17)	-	Depleted Matri)			ow Dark Surface (F2	
	RA 144A, 145, 149B)	-	Redox Dark Si		6)			plain in Remarks)	-)
	nosulfide (A18)	-	Depleted Dark	`	,			dan in Kondikoj	
	lucky Mineral (S1)	-	Redox Depres		• •				
		-			0)		³ Indiante	ors of hydrophytic ve	actation and
	Gleyed Matrix (S4)	-	Marl (F10) (LR						-
	Redox (S5) I Matrix (S6)	-	Red Parent Ma	ateriai (F	·21) (MLI	KA 145)		nd hydrology must be s disturbed or proble	
Restrictive	Layer (if observed):							· ·	
Type: Depth (ir	nches):						Hydric Soil Present	? Yes	No X
Remarks:									

WETLAND DETERMIN See ERDC/EL		SHEET - N	-		•	OMB Control #: 0710-0024, Exp: 9/30/2027 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)
Project/Site: Christ Commu	nity Chapel			City/Count	y: <u>Summit C</u>	County Sampling Date: 2/27/202
Applicant/Owner: CESO	, Inc.					State: OH Sampling Point: UPL
Investigator(s): Kerry Hamlir	n, Chris Winkler			S	ection, Town	ship, Range: N/A
Landform (hillside, terrace, et			Local r			none): None Slope %: 0
Subregion (LRR or MLRA):	,	139			Long: -8	
Soil Map Unit Name: Canea						NWI classification: None
Are climatic / hydrologic cond					Yes	No X (If no, explain in Remarks.)
Are Vegetation, Soil		•••	-			Circumstances" present? Yes X No
Are Vegetation, Soil						explain any answers in Remarks.)
SUMMARY OF FINDIN	GS – Attach	site map	showing sam	pling po	int locatio	ons, transects, important features, etc
Hydrophytic Vegetation Pres Hydric Soil Present? Wetland Hydrology Present?		Yes Yes Yes		within a	ampled Area Wetland? otional Wetla	Yes No _X
Remarks: (Explain alternation Significant recent rainfall and indicators for wetland hydrol	d snowmelt resu			able, and s	urface water	throughout AOI. These factors were excluded as
HYDROLOGY						
Wetland Hydrology Indicat					<u>S</u>	econdary Indicators (minimum of two required)
Primary Indicators (minimun	<u>n of one is requi</u>					Surface Soil Cracks (B6)
Surface Water (A1)			-Stained Leaves (E	39)	_	Drainage Patterns (B10)
High Water Table (A2) Saturation (A3)			c Fauna (B13) eposits (B15)		_	Moss Trim Lines (B16) Dry-Season Water Table (C2)
Water Marks (B1)			gen Sulfide Odor (C1)	-	Crayfish Burrows (C8)
Sediment Deposits (B2)			ed Rhizospheres of		pots (C3)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)			nce of Reduced Irc	0		Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)			t Iron Reduction ir	. ,	s (C6)	Geomorphic Position (D2)
Iron Deposits (B5)			luck Surface (C7)			Shallow Aquitard (D3)
Inundation Visible on Ae	erial Imagery (B		(Explain in Remarl	ks)		Microtopographic Relief (D4)
Sparsely Vegetated Cor	ncave Surface (I	38)				FAC-Neutral Test (D5)
Field Observations:						
Surface Water Present?	Yes	No <u>X</u>	Depth (inches):			
Water Table Present?	Yes X	No	Depth (inches):	17		
Saturation Present?	Yes X	No	Depth (inches):	0	Wetland	Hydrology Present? Yes No _X
(includes capillary fringe) Describe Recorded Data (st						
	lean gauge, mo	Shitoning wen	, aenai priotos, pre		ections), il av	allable.
Remarks:						

Sampling Point: UPL-3

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30')	% Cover	Species?	Status	Dominance Test worksheet:
1. Prunus serotina	50	Yes	FACU	Number of Dominant Species
2.				That Are OBL, FACW, or FAC: 0 (A)
3.				
4.				Total Number of DominantSpecies Across All Strata:33(B)
5				
6				Percent of Dominant Species That Are OBL, FACW, or FAC: 0.0% (A/B)
		·		Prevalence Index worksheet:
7		Tatal Osuar		
	50	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species x 1 =
1. Ligustrum vulgare	30	Yes	FACU	FACW species 0 x 2 = 0
2. Rosa multiflora	20	Yes	FACU	FAC species x 3 = 9
3				FACU species 100 x 4 = 400
4				UPL species x 5 =
5				Column Totals: 103 (A) 409 (B)
6.				Prevalence Index = B/A = 3.97
7.				Hydrophytic Vegetation Indicators:
	50	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
<u>Herb Stratum</u> (Plot size: 5')				2 - Dominance Test is >50%
1. Geum canadense	3	No	FAC	$3 - Prevalence Index is \leq 3.0^{1}$
				—
2				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
3				
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11.				and greater than or equal to 3.28 ft (1 m) tall.
12.				
	3	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30')				
				Woody vines – All woody vines greater than 3.28 ft in
				height.
2		·		Hydrophytic
3				Vegetation
4		·		Present? Yes <u>No X</u>
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

Profile Description: (D	escribe to the de				ator or co	onfirm the absence o	of indicators	s.)	
Depth	Matrix		x Featur						
(inches) Color (moist) %	Color (moist)	%	Type ¹	Loc ²	Texture		Remark	s
0-8 10YF	4/2 100					Loamy/Clayey			
8-20 10YF	4/3 100					Loamy/Clayey			
·									
¹ Type: C=Concentration	n, D=Depletion, RI	M=Reduced Matrix, N	MS=Mas	ked Sand	d Grains.	² Location: F	PL=Pore Lini	ng, M=Matr	ix.
Hydric Soil Indicators:							or Problem	-	
Histosol (A1)		Dark Surface (uck (A10) (L		,
Histic Epipedon (A2)	Polyvalue Belo		ce (S8) (LRR R,		-		LRR K, L, R)
Black Histic (A3)	0	MLRA 149B	'				ue Below Su		
Hydrogen Sulfide (A	-	Thin Dark Surf					rk Surface (S		
Stratified Layers (AS		High Chroma	-				-		(LRR K, L, R)
Depleted Below Dar		Loamy Mucky			R K, L)			-) (MLRA 149B)
Thick Dark Surface	(A12)	Loamy Gleyed		F2)					side MLRA 145)
Mesic Spodic (A17)	E 140D)	Depleted Matr Redox Dark S		5			allow Dark S Explain in Re	-	2)
(MLRA 144A, 14			-	-				illaiks)	
Iron Monosulfide (A Sandy Mucky Miner		Depleted Dark							
	. ,	Redox Depres	,	8)		31	atoma of lovely		
Sandy Gleyed Matri	x (54)	Marl (F10) (LR	-				ators of hydr		
Sandy Redox (S5) Stripped Matrix (S6)		Red Parent Ma	ateriai (F	·21) (IVILI	KA 145)		land hydrolo ess disturbed		
						I			
Restrictive Layer (if ob Type:	served):								
Depth (inches):						Hydric Soil Prese	nt?	Yes	No X
Remarks:									<u> </u>
Remarks.									

WETLAND DETERMINATIO	U.S. Army Corps of Engineers DETERMINATION DATA SHEET – Northcentral and Northeast Region ERDC/EL TR-12-1; the proponent agency is CECW-CO-R OMB Control #: 0710-0024, Ex Requirement Control Symbol (Authority: AR 335-15, parag							
Project/Site: Christ Community Cl	napel		City/County	/: Summit Co	ounty Sampling Date: 2/27/2025			
Applicant/Owner: CESO, Inc.					State: OH Sampling Point: UPL-4			
Investigator(s): Kerry Hamlin, Chris	s Winkler		Se	ction, Towns	ship, Range: N/A			
Landform (hillside, terrace, etc.):	Flat	Local r	elief (conca	ve, convex, r	none): None Slope %: 0			
Subregion (LRR or MLRA): LRR F	R, MLRA 139	Lat: 41.2300045		Long: -8	1.4834166 Datum: NAD 83			
Soil Map Unit Name: Geeburg silt	loam, 6 to 12 pe	ercent slopes moderately	eroded (Gl		NWI classification: None			
Are climatic / hydrologic conditions	on the site typic	al for this time of year?	Ň	/es	No X (If no, explain in Remarks.)			
Are Vegetation, Soil	, or Hydrology	significantly disturb	bed?	Are "Normal	Circumstances" present? Yes X No			
Are Vegetation, Soil	-			(If needed, e	explain any answers in Remarks.)			
SUMMARY OF FINDINGS -	Attach site	map showing sam	pling po	int locatio	ons, transects, important features, etc.			
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No X No X No X	within a	mpled Area Wetland? tional Wetlar	Yes No_X			
Remarks: (Explain alternative pro Significant recent rainfall and snov indicators for wetland hydrology.		• • • •	able, and su	Irface water t	throughout AOI. These factors were excluded as			
HYDROLOGY								
Wetland Hydrology Indicators:				Se	econdary Indicators (minimum of two required)			
Primary Indicators (minimum of or			20)		Surface Soil Cracks (B6)			
Surface Water (A1) High Water Table (A2)		Water-Stained Leaves (E Aquatic Fauna (B13)	59)		_ Drainage Patterns (B10) Moss Trim Lines (B16)			
Saturation (A3)		Marl Deposits (B15)			Dry-Season Water Table (C2)			
Water Marks (B1)		Hydrogen Sulfide Odor (C1)	_	Crayfish Burrows (C8)			
Sediment Deposits (B2)		Oxidized Rhizospheres c	-	ots (C3)	Saturation Visible on Aerial Imagery (C9)			
Drift Deposits (B3)		Presence of Reduced Irc Recent Iron Reduction in	· · /		Stunted or Stressed Plants (D1)			
Algal Mat or Crust (B4) Iron Deposits (B5)		Thin Muck Surface (C7)	Tilled Solis	. (00)	Geomorphic Position (D2) Shallow Aquitard (D3)			
Inundation Visible on Aerial Im		Other (Explain in Remark	<s)< td=""><td></td><td>Microtopographic Relief (D4)</td></s)<>		Microtopographic Relief (D4)			
Sparsely Vegetated Concave	Surface (B8)			_	FAC-Neutral Test (D5)			
Field Observations:								
Surface Water Present? Yes	No No	X Depth (inches):						
	X No X No	Depth (inches): Depth (inches):		Wetland H	Hydrology Present? Yes No _X			
(includes capillary fringe)	<u> </u>			Wettand I				
Describe Recorded Data (stream g	gauge, monitorir	ng well, aerial photos, pre	vious inspe	ctions), if ava	ailable:			
Remarks:								

Γ

Sampling Point: UPL-4

	Absolute	Dominant	Indicator					
Tree Stratum (Plot size: 30')	% Cover	Species?	Status	Dominance Test w	orksheet:			
1. Prunus serotina	40	Yes	FACU	Number of Dominar				
2. Gleditsia triacanthos	40	Yes	FAC	That Are OBL, FAC	W, or FAC:	3	(A)	
3. Quercus palustris	10	No	FACW	Total Number of Do	minant			
4				Species Across All	Strata:	8	(B)	
5				Percent of Dominar	nt Species			
6				That Are OBL, FAC		37.59	%(A/B	3)
7.				Prevalence Index	worksheet:			
	90	=Total Cover		Total % Cover	of:	Multiply	/ by:	
Sapling/Shrub Stratum (Plot size: 15')				OBL species	0 x	1 =	0	
<u> </u>				FACW species	10 x	2 =	20	
2.				FAC species			138	
2				FACU species			200	
4.				UPL species			20	
E								51
					`	·		"
6.				Prevalence I			.44	
7				Hydrophytic Veget				
		=Total Cover		1 - Rapid Test f	• • •	-	tion	
Herb Stratum (Plot size: 5')				2 - Dominance	Test is >50%			
1. Fragaria vesca	4	Yes	UPL	3 - Prevalence	Index is ≤3.0	1		
2. Ligustrum vulgare	4	Yes	FACU	4 - Morphologic				ng
3. Geum canadense	3	Yes	FAC	data in Rema	arks or on a s	eparate sl	heet)	
4. Oxalis stricta	3	Yes	FACU	Problematic Hy	drophytic Ve	getation ¹ (Explain)	
5. Microstegium vimineum	3	Yes	FAC	¹ Indicators of hydric	soil and wet	and hydro	loav must	
6. Solidago canadensis	3	Yes	FACU	be present, unless of		•		
7.				Definitions of Vege	etation Strat	a:		
8.				_			- i	
9.				Tree – Woody plant diameter at breast h	· ·	,		t.
10.						-	-	
11.				Sapling/shrub – W and greater than or				
				-				
12		Tatal Osuar		Herb – All herbaced				s
Maadu Mina Chrahima (Dist size) 201	20	=Total Cover		of size, and woody	plants less th	an 3.28 it	tall.	
Woody Vine Stratum (Plot size: 30')				Woody vines – All	woody vines	greater th	an 3.28 ft i	in
1				height.				
2				Hydrophytic				
3				Vegetation				
4				Present? Ye	es	No X	_	
		=Total Cover						
Remarks: (Include photo numbers here or on a separation of the sep	ate sheet.)							

Depth Matrix Redox Features (inches) Color (moist) % Type Loarny/Clayey 14 10YR 4/3 100 Loarny/Clayey Prominent redox concentrations 18-20 10YR 4/2 97 10YR 5/8 3 C M Loarny/Clayey Prominent redox concentrations 18-20 10YR 4/2 100 Loarny/Clayey Prominent redox concentrations Loarny/Clayey Prominent redox concentrations 18-20 10YR 4/2 100 Loarny/Clayey Loarny/Clayey Loarny/Clayey Image: Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. *Location: PL=Pore Lining, M=Matrix. Indicators for Problematic Hydric Soils? Histosol (A1) Dark Surface (S1) (LRR R, MLRA 1498) Sort Muck (A10) (LRR K, L) Polyaulae Below Surface (S3) (LRR R, L) Polyaulae Below Surface (S3) (LRR K, L) Polyaulae	Profile Des Depth	cription: (Describe Matrix	to the de				ator or c	onfirm the absence of	indicators.)	
0-14 10/R 4/3 100 Loamy/Clayey 14-18 10/R 4/2 97 10/R 5/8 3 C M Loamy/Clayey Prominent redox concentrations 18-20 10/R 4/2 100			%				Loc ²	Texture	Rema	rks
14-18 10YR 4/2 97 10YR 5/8 3 C M Loamy/Clayey Prominent redox concentrations 18-20 10YR 4/2 100	<u> </u>									
18:20 10YR 4/2 100 Loamy/Clayey 18:20 10YR 4/2 100 Loamy/Clayey 18:20 10YR 4/2 100 Loamy/Clayey 19:20 10YR 4/2 100 Loamy/Clayey 10 10 Loamy/Clayey Loamy/Clayey 11 10 Loamy/Clayey Loamy/Clayey 11 Loamy/Clayey Loamy/Clayey Loamy/Clayey 11 Loamy/Clayey Loamy/Clayey Loamy/Clayey 11 Loamy/Lastack Sig (LR K, L, NLRA 149B) Startified Layers (A12) Loamy/Lastace (S9) (LR K, L, D) 11 Loamy/Lastace (Clayey Polyalue Below Surface (S9) (LR K, L, R) Polyalue Below Surface (S9) (LR K,	14-18	· · · · · · · · · · · · · · · · · · ·		 10YR 5/8	3	<u>с</u>			Prominent redox	concentrations
Image: space of the system										
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, P) Black Histic (A3) MLRA 149B) Polyvalue Below Surface (S9) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (MLRA 149B) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside MLRA 149B) Mesic Spodic (A17) Depleted Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Red Parent Material (F21) (MLRA 1445) Sandy Redox (S5) Red Parent Material (F21) (MLRA 1445) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): No _X	10-20	1011(4/2								
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, P) Black Histic (A3) MLRA 149B) Polyvalue Below Surface (S9) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (MLRA 149B) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside MLRA 149B) Mesic Spodic (A17) Depleted Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Red Parent Material (F21) (MLRA 1445) Sandy Redox (S5) Red Parent Material (F21) (MLRA 1445) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): No _X			·							
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, P) Black Histic (A3) MLRA 149B) Polyvalue Below Surface (S9) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (MLRA 149B) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside MLRA 149B) Mesic Spodic (A17) Depleted Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Red Parent Material (F21) (MLRA 1445) Sandy Redox (S5) Red Parent Material (F21) (MLRA 1445) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): No _X			·			·				
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, P) Black Histic (A3) MLRA 149B) Polyvalue Below Surface (S9) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (MLRA 149B) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside MLRA 149B) Mesic Spodic (A17) Depleted Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Red Parent Material (F21) (MLRA 1445) Sandy Redox (S5) Red Parent Material (F21) (MLRA 1445) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): No _X		- <u> </u>								
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, P) Black Histic (A3) MLRA 149B) Polyvalue Below Surface (S9) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (MLRA 149B) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside MLRA 149B) Mesic Spodic (A17) Depleted Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Red Parent Material (F21) (MLRA 1445) Sandy Redox (S5) Red Parent Material (F21) (MLRA 1445) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): No _X		<u></u>								
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, P) Black Histic (A3) MLRA 149B) Polyvalue Below Surface (S9) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (MLRA 149B) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside MLRA 149B) Mesic Spodic (A17) Depleted Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Red Parent Material (F21) (MLRA 1445) Sandy Redox (S5) Red Parent Material (F21) (MLRA 1445) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): No _X										
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, P) Black Histic (A3) MLRA 149B) Polyvalue Below Surface (S9) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (MLRA 149B) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside MLRA 149B) Mesic Spodic (A17) Depleted Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Red Parent Material (F21) (MLRA 1445) Sandy Redox (S5) Red Parent Material (F21) (MLRA 1445) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): No _X										
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, P) Black Histic (A3) MLRA 149B) Polyvalue Below Surface (S9) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (MLRA 149B) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside MLRA 149B) Mesic Spodic (A17) Depleted Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Red Parent Material (F21) (MLRA 1445) Sandy Redox (S5) Red Parent Material (F21) (MLRA 1445) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): No _X			·							
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, P) Black Histic (A3) MLRA 149B) Polyvalue Below Surface (S9) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (MLRA 149B) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside MLRA 149B) Mesic Spodic (A17) Depleted Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Red Parent Material (F21) (MLRA 1445) Sandy Redox (S5) Red Parent Material (F21) (MLRA 1445) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): No _X			·							
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, P) Black Histic (A3) MLRA 149B) Polyvalue Below Surface (S9) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (MLRA 149B) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside MLRA 149B) Mesic Spodic (A17) Depleted Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Red Parent Material (F21) (MLRA 1445) Sandy Redox (S5) Red Parent Material (F21) (MLRA 1445) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): No _X										
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, P) Black Histic (A3) MLRA 149B) Polyvalue Below Surface (S9) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (MLRA 149B) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside MLRA 149B) Mesic Spodic (A17) Depleted Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Red Parent Material (F21) (MLRA 1445) Sandy Redox (S5) Red Parent Material (F21) (MLRA 1445) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): No _X										
Histosol (A1) Dark Surface (S7) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Black Histic (A3) MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (MLRA 149B Mesic Spodic (A17) Depleted Matrix (F2) Red Parent Material (F21) (outside MLRA 149B) Mesic Spodic (A17) Depleted Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Sandy Redox (S5) Red Parent Material (F21) (MLRA 1445) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	¹ Type: C=C	Concentration, D=Dep	letion, RM	I=Reduced Matrix, N	MS=Mas	ked San	d Grains.	² Location: PL	.=Pore Lining, M=Ma	atrix.
Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Polyvalue Below Surface (S8) (LRR K, L) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (MLRA 149B Mesic Spodic (A17) Depleted Matrix (F2) Red Parent Material (F21) (outside MLRA 149 Monosulfide (A18) Depleted Dark Surface (F6) Other (Explain in Remarks) Sandy Gleyed Matrix (S4) Mari (F10) (LRR K, L) 3 Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): Yes No X	Hydric Soil	Indicators:								
Black Histic (A3) MLRA 149B) Polyvalue Below Surface (S8) (LRR K, L) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (MLRA 149B Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside MLRA 149 Mesic Spodic (A17) Depleted Matrix (F3) Very Shallow Dark Surface (F22) (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:										
Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Thin Dark Surface (S9) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (MLRA 149B Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside MLRA 149 Mesic Spodic (A17) Depleted Matrix (F3) Redox Dark Surface (F6) Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Redox Depressions (F8) Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Type:							LRR R,		•	
Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (MLRA 149B Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside MLRA 149 Mesic Spodic (A17) Depleted Matrix (F3) Very Shallow Dark Surface (F22) (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Gleyed Matrix (S4) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: No _X Type: No _X No _X					'					
Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Piedmont Floodplain Soils (F19) (MLRA 149B Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside MLRA 149 Mesic Spodic (A17) Depleted Matrix (F3) Very Shallow Dark Surface (F22) (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Mucky Mineral (S1) Redox Depressions (F8) 3Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:										
Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Red Parent Material (F21) (outside MLRA 144 Mesic Spodic (A17) Depleted Matrix (F3) Very Shallow Dark Surface (F22) (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Mucky Mineral (S1) Redox Depressions (F8) Marl (F10) (LRR K, L) Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): Yes No X			o (A11)		-					
Mesic Spodic (A17) Depleted Matrix (F3) Very Shallow Dark Surface (F22) (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Mucky Mineral (S1) Redox Depressions (F8) Arrif (F10) (LRR K, L) Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:			e (ATT)				κ κ, μ)			
(MLRA 144A, 145, 149B) Redox Dark Surface (F6) Other (Explain in Remarks) Iron Monosulfide (A18) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Mucky Mineral (S1) Redox Depressions (F8) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Hydric Soil Present? Yes No X						(12)				
Iron Monosulfide (A18) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Redox Depressions (F8) Sandy Gleyed Matrix (S4) Marl (F10) (LRR K, L) Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) Stripped Matrix (S6) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes No						-6)				,
Sandy Gleyed Matrix (S4) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation and Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) wetland hydrology must be present, Stripped Matrix (S6) unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes No _X	-				•	,			. ,	
Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Hydric Soil Present? Yes No _X	Sandy M	Mucky Mineral (S1)		Redox Depres	sions (F	8)				
Stripped Matrix (S6) unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes No _X	Sandy C	Gleyed Matrix (S4)		Marl (F10) (LF	R K, L)			³ Indicat	ors of hydrophytic v	egetation and
Restrictive Layer (if observed): Hydric Soil Present? Yes No _ X	Sandy F	Redox (S5)		Red Parent Ma	aterial (F	21) (ML	RA 145)			
Type:	Stripped	d Matrix (S6)						unles	s disturbed or proble	ematic.
Depth (inches): Hydric Soil Present? Yes No X		Layer (if observed):	1							
Remarks:	Depth (i	inches):						Hydric Soil Presen	t? Yes	NoX
	Remarks:									

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R	OMB Control #: 0710-0024, Exp: 9/30/2027 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)				
Project/Site: Christ Community Chapel City/County: Summit Cour	nty Sampling Date: 2/27/2025				
Applicant/Owner: CESO, Inc.	State: OH Sampling Point: UPL-5				
Investigator(s): Kerry Hamlin, Chris Winkler Section, Township	p, Range: N/A				
Landform (hillside, terrace, etc.): Flat Local relief (concave, convex, nor					
Subregion (LRR or MLRA): LRR R, MLRA 139 Lat: 41.2310164 Long: -81.4					
	NWI classification: None				
	No X (If no, explain in Remarks.)				
	rcumstances" present? Yes X No				
	lain any answers in Remarks.)				
SUMMARY OF FINDINGS – Attach site map showing sampling point locations	s, transects, important features, etc.				
Hydrophytic Vegetation Present? Yes No X Is the Sampled Area Hydric Soil Present? Yes No X within a Wetland? Wetland Hydrology Present? Yes No X If yes, optional Wetland	Yes No _X Site ID:				
Remarks: (Explain alternative procedures here or in a separate report.) Significant recent rainfall and snowmelt resulting in saturation, high water table, and surface water thro indicators for wetland hydrology.	oughout AOI. These factors were excluded as				
HYDROLOGY					
Primary Indicators (minimum of one is required; check all that apply) 9 Surface Water (A1) Water-Stained Leaves (B9) 1 High Water Table (A2) Aquatic Fauna (B13) 1 Saturation (A3) Marl Deposits (B15) 1 Water Marks (B1) Hydrogen Sulfide Odor (C1) 0 Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) 5 Drift Deposits (B3) Presence of Reduced Iron (C4) 5 Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) 0 Iron Deposits (B5) Thin Muck Surface (C7) 5 Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) 5	ondary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)				
Surface Water Present? Yes No X Depth (inches):					
Water Table Present? Yes No X Depth (inches): Mo Wetland Hyde Saturation Present? Yes X No Depth (inches): 0 Wetland Hyde (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available Mo Arrow Mo	drology Present? Yes <u>No X</u> able:				
Remarks:					

Г

VEGETATION – Use scientific names of plants.

Sampling Point: UPL-5

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30')	% Cover	Species?	Status	Dominance Test worksheet:
1				Number of Dominant Species
2				That Are OBL, FACW, or FAC:(A)
3				Total Number of Dominant
4				Species Across All Strata: 1 (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: 0.0% (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species 0 x 1 = 0
1				FACW species 0 x 2 = 0
2				FAC species x 3 =
3				FACU species 95 x 4 = 380
4.				UPL species 0 x 5 = 0
5.				Column Totals: 95 (A) 380 (B)
6.				Prevalence Index = B/A = 4.00
7.				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5')				2 - Dominance Test is >50%
1. Poa pratensis	90	Yes	FACU	3 - Prevalence Index is ≤3.0 ¹
2. Solidago canadensis	5	No	FACU	4 - Morphological Adaptations ¹ (Provide supporting
2			17.00	data in Remarks or on a separate sheet)
				Problematic Hydrophytic Vegetation ¹ (Explain)
				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9		·		diameter at breast height (DBH), regardless of height.
10		·		Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12		·		Herb – All herbaceous (non-woody) plants, regardless
	95	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30')				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				Hydrophytic
3				Vegetation
4				Present? Yes <u>No X</u>
		=Total Cover		
Remarks: (Include photo numbers here or on a separ	rate sheet.)			•

SOIL

		to the dep				ator or c	onfirm the absence o	of indicators.)	
Depth (inches)	Matrix Color (moist)	%	Color (moist)	x Featur %	res Type ¹	Loc ²	Texture	Rema	
0-6	10YR 5/3	<u> </u>	10YR 5/8	2	<u>Type</u> C	 M	Loamy/Clayey	Prominent redox	
6-14	10YR 4/2	98	10YR 5/8	2	<u> </u>		Loamy/Clayey	Prominent redox	concentrations
——									
	oncentration, D=Dep	Lation DM	-Deduced Matrix N				21 exertion:		otrix
Hydric Soil		ietion, Rivi-	-Reduced Matrix, N	15=Ivias	ked Sand	i Grains.		PL=Pore Lining, M=M for Problematic Hyd	
Histosol			Dark Surface (S7)				uck (A10) (LRR K, L,	
	pipedon (A2)	-	Polyvalue Belo	-	ce (S8) (LRR R,		ucky Peat or Peat (S	
	istic (A3)	-	MLRA 1498		()(ue Below Surface (S8	
Hydroge	en Sulfide (A4)	_	Thin Dark Surfa	ace (S9)) (LRR R	, MLRA [,]		ark Surface (S9) (LRF	
Stratified	d Layers (A5)	-	High Chroma S	Sands (S	611) (LRI	R K, L)	Iron-Ma	inganese Masses (F1	2) (LRR K, L, R)
Depleted	d Below Dark Surface	e (A11)	Loamy Mucky I	Mineral	(F1) (LR	R K, L)	Piedmo	nt Floodplain Soils (F	19) (MLRA 149B)
	ark Surface (A12)	-	Loamy Gleyed	Matrix (F2)			rent Material (F21) (o	
	podic (A17)	-	Depleted Matrix					nallow Dark Surface (F22)
	RA 144A, 145, 149B)	-	Redox Dark Su	•	,		Other (E	Explain in Remarks)	
	nosulfide (A18)	-	Depleted Dark		· · /				
	/lucky Mineral (S1) Gleyed Matrix (S4)	-	Redox Depress Marl (F10) (LR		8)		³ India	ators of hydrophytic v	vagatation and
	Redox (S5)	-	Red Parent Ma		21) (MI F	RA 145)		tland hydrology must	
	I Matrix (S6)	-			21) (111)	(,, 140)		ess disturbed or prob	
								•	
Type:	Layer (if observed):								
	nches):						Hydric Soil Prese	ent? Yes	No X
Remarks:	,						,		
	4" due to stone layer.								
	,								

APPENDIX B – SITE PHOTOGRAPHS

Photograph #	2
Date:	2-27-2025
Description: /iew of AOI facing south.	

Photograph #	4				
Date:	2-27-2025				
Description:			KI		
View of AOI facing south.					
		a series	1 Ale	E.	
					S- F
					25 ALM

Photograph #	6	
Date:	2-27-2025	
Description: View of AOI with drain stormwater basin facir		

Photograph #	8	
Date:	2-27-2025	
Description: View of AOI with exist basin facing west.	ting stormwater	

Photograph #	12	DANK			
Date:	2-27-2025			ANN	
Description:					
View of wetland W-1 facing	south.			No DT	
		THE MAN	A A	N XC	
				ANT.	- THE
			<	AND	
				Alt	
		11 AX			The

 Photograph #
 13

 Date:
 2-27-2025

 Description:

 View of wetland W-1 facing east.

Photograph #	14	AAA		
Date:	2-27-2025			
Description:			111312	
View of wetland W-1 facir	ng west.			
				A REAL PROPERTY OF
			-	
		- dilla.	I Destra TH	And the second
			AMAR	
			V RACE	

Photograph #	16	
Date:	2-27-2025	
Description: View of wetland W-2 facir	ng south.	

Photograph #	18	
Date:	2-27-2025	
Description:		
View of wetland W-2 faci	ng west.	
		们人的影响和你们和我的多么的政策
		HE MARKEN MARKEN L

Photograph #	20	
Date:	2-27-2025	
Description:		
View of wetland W-3 facing	south.	
		A There is a second and the second a

Photograph #	22				
Date:	2-27-2025			Var b	
Description:		X /stea			
View of wetland W-3 facing	g west.		家和	5368 C	
			SAR		

Photograph #	24
Date:	2-27-2025
Description:	
View of upland point UPL-2	

Photograph #	26
Date:	2-27-2025
Description:	
View of upland point UPL-4	

Photograph #	28			TAN	
Date:	2-27-2025			MAN	
Description:					
View of seep 1.					
				TELL	
		1.10			
			A. There		

Photograph #	29	
Date:	2-27-2025	
Description:		
View of seep 2.		

APPENDIX C – SOIL MAP AND DESCRIPTIONS

USDA United States Department of Agriculture

> Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Summit County, Ohio

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	. 11
Map Unit Descriptions	11
Summit County, Ohio	
Ca—Canadice silty clay loam	
CcB—Caneadea silt loam, 2 to 6 percent slopes	.14
CoC2—Chili gravelly loam, 6 to 12 percent slopes, moderately eroded	. 15
EuC—Ellsworth-Urban land complex, 6 to 18 percent slopes	.16
GbC2—Geeburg silt loam, 6 to 12 percent slopes, moderately eroded	.18
GbD2—Geeburg silt loam, 12 to 18 percent slopes, moderately eroded	
Mn—Mahoning-Urban land complex, 0 to 2 percent slopes	
Sb—Sebring silt loam, 0 to 2 percent slopes	
WrB—Wheeling silt loam, 2 to 6 percent slopes	
Soil Information for All Uses	
Suitabilities and Limitations for Use	.25
Land Classifications	
Hydric Rating by Map Unit	
References	.31

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

	MAP L	EGEND)	MAP INFORMATION
Area of Int	terest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soils	Soil Map Unit Polygons	Ø V	Very Stony Spot Wet Spot	Warning: Soil Map may not be valid at this scale.
~	Soil Map Unit Lines Soil Map Unit Points	Δ	Other	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of
Special	Point Features Blowout	Water Fea	Special Line Features atures Streams and Canals	contrasting soils that could have been shown at a more detailed scale.
2 *	Borrow Pit Clay Spot	Transport		Please rely on the bar scale on each map sheet for map measurements.
×	Closed Depression Gravel Pit	~	Interstate Highways US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
.: ©	Gravelly Spot Landfill	*	Major Roads Local Roads	Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator
۸. بینے ج	Lava Flow Marsh or swamp Mine or Quarry	Backgrou	nd Aerial Photography	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
0	Miscellaneous Water Perennial Water			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
× +	Rock Outcrop Saline Spot			Soil Survey Area: Summit County, Ohio Survey Area Data: Version 21, Aug 29, 2024
*** •	Sandy Spot Severely Eroded Spot			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
\$ ≥	Sinkhole Slide or Slip			Date(s) aerial images were photographed: Sep 12, 2020—Sep 21, 2020
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Мар	Unit	Legend
-----	------	--------

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
Са	Canadice silty clay loam	0.1	0.2%	
СсВ	Caneadea silt loam, 2 to 6 percent slopes	14.0	49.2%	
CoC2	Chili gravelly loam, 6 to 12 percent slopes, moderately eroded	2.1	7.5%	
EuC	Ellsworth-Urban land complex, 6 to 18 percent slopes	2.3	8.1%	
GbC2	Geeburg silt loam, 6 to 12 percent slopes, moderately eroded	4.4	15.3%	
GbD2	Geeburg silt loam, 12 to 18 percent slopes, moderately eroded	0.1	0.3%	
Mn	Mahoning-Urban land complex, 0 to 2 percent slopes	3.0	10.5%	
Sb	Sebring silt loam, 0 to 2 percent slopes	0.4	1.4%	
WrB	Wheeling silt loam, 2 to 6 percent slopes	2.1	7.4%	
Totals for Area of Interest		28.6	100.0%	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different

management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Summit County, Ohio

Ca—Canadice silty clay loam

Map Unit Setting

National map unit symbol: wpsl Elevation: 590 to 1,970 feet Mean annual precipitation: 32 to 42 inches Mean annual air temperature: 48 to 54 degrees F Frost-free period: 140 to 195 days Farmland classification: Not prime farmland

Map Unit Composition

Canadice and similar soils: 95 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Canadice

Setting

Landform: Depressions on terraces Down-slope shape: Concave Across-slope shape: Concave Parent material: Clayey lacustrine deposits

Typical profile

H1 - 0 to 9 inches: silty clay loam H2 - 9 to 38 inches: silty clay H3 - 38 to 60 inches: silty clay

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water supply, 0 to 60 inches: Moderate (about 8.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: D Ecological site: F139XY012OH - Wet Acidic Depression Forage suitability group: Unnamed (G139XYC-2OH) Other vegetative classification: Unnamed (G139XYC-2OH) Hydric soil rating: Yes

Minor Components

Caneadea

Percent of map unit: 5 percent Landform: Rises Hydric soil rating: No

CcB—Caneadea silt loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: wpsn Elevation: 590 to 1,970 feet Mean annual precipitation: 32 to 42 inches Mean annual air temperature: 48 to 54 degrees F Frost-free period: 140 to 195 days Farmland classification: Not prime farmland

Map Unit Composition

Caneadea and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Caneadea

Setting

Landform: Terraces Down-slope shape: Concave Across-slope shape: Linear Parent material: Clayey lacustrine deposits

Typical profile

H1 - 0 to 7 inches: silt loam H2 - 7 to 43 inches: silty clay H3 - 43 to 60 inches: silty clay loam

Properties and qualities

Slope: 2 to 6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Available water supply, 0 to 60 inches: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: D Ecological site: F139XY002OH - Moist Calcareous Drift Flats Forage suitability group: Unnamed (G139XYC-2OH) Other vegetative classification: Unnamed (G139XYC-2OH) Hydric soil rating: No

Minor Components

Soils with a silt mantle

Percent of map unit: 4 percent

Geeburg

Percent of map unit: 4 percent Landform: Moraines, till plains

Glenford

Percent of map unit: 4 percent Landform: Terraces, lake plains

Canadice

Percent of map unit: 3 percent *Landform:* Drainageways on terraces, depressions on terraces *Hydric soil rating:* Yes

CoC2—Chili gravelly loam, 6 to 12 percent slopes, moderately eroded

Map Unit Setting

National map unit symbol: wpt4 Elevation: 700 to 1,160 feet Mean annual precipitation: 32 to 42 inches Mean annual air temperature: 48 to 54 degrees F Frost-free period: 133 to 195 days Farmland classification: Not prime farmland

Map Unit Composition

Chili and similar soils: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Chili

Setting

Landform: Terraces, kames Down-slope shape: Convex Across-slope shape: Convex Parent material: Loamy outwash

Typical profile

H1 - 0 to 9 inches: gravelly loam *H2 - 9 to 42 inches:* gravelly sandy loam *H4 - 42 to 60 inches:* gravelly sand

Properties and qualities

Slope: 6 to 12 percent *Depth to restrictive feature:* More than 80 inches *Drainage class:* Well drained Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Available water supply, 0 to 60 inches: Low (about 5.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: A Ecological site: F139XY003OH - Dry Calcareous Drift Plains Forage suitability group: Unnamed (G139XYB-1OH) Other vegetative classification: Unnamed (G139XYB-1OH) Hydric soil rating: No

Minor Components

Wooster

Percent of map unit: 4 percent Landform: Moraines, till plains

Areas with less gravel in the surface layer Percent of map unit: 3 percent

Areas with more gravel in the surface layer Percent of map unit: 3 percent

EuC—Ellsworth-Urban land complex, 6 to 18 percent slopes

Map Unit Setting

National map unit symbol: 2v02f Elevation: 590 to 1,970 feet Mean annual precipitation: 33 to 52 inches Mean annual air temperature: 43 to 52 degrees F Frost-free period: 135 to 215 days Farmland classification: Not prime farmland

Map Unit Composition

Ellsworth and similar soils: 55 percent *Urban land:* 30 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Ellsworth

Setting

Landform: Till plains Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Till

Typical profile

Ap - 0 to 8 inches: silt loam BE - 8 to 11 inches: silty clay loam Bt1 - 11 to 16 inches: silty clay loam Bt2 - 16 to 25 inches: silty clay loam Bt3 - 25 to 37 inches: silty clay loam C - 37 to 60 inches: silty clay loam

Properties and qualities

Slope: 6 to 18 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 11 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Available water supply, 0 to 60 inches: Moderate (about 6.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: D Ecological site: F139XY002OH - Moist Calcareous Drift Flats Hydric soil rating: No

Description of Urban Land

Setting

Down-slope shape: Linear Across-slope shape: Linear

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydric soil rating: Unranked

Minor Components

Udorthents

Percent of map unit: 10 percent Hydric soil rating: Unranked

Mahoning

Percent of map unit: 5 percent Landform: Till plains Landform position (two-dimensional): Summit, footslope Landform position (three-dimensional): Interfluve, base slope Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

GbC2—Geeburg silt loam, 6 to 12 percent slopes, moderately eroded

Map Unit Setting

National map unit symbol: wpv6 Elevation: 590 to 1,970 feet Mean annual precipitation: 32 to 42 inches Mean annual air temperature: 48 to 54 degrees F Frost-free period: 140 to 195 days Farmland classification: Not prime farmland

Map Unit Composition

Geeburg and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Geeburg

Setting

Landform: Hillsides Down-slope shape: Convex Across-slope shape: Convex Parent material: Clayey lacustrine deposits

Typical profile

H1 - 0 to 7 inches: silt loam *H2 - 7 to 33 inches:* silty clay *H3 - 33 to 60 inches:* silty clay

Properties and qualities

Slope: 6 to 12 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 18 to 30 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Available water supply, 0 to 60 inches: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: D Ecological site: F139XY002OH - Moist Calcareous Drift Flats Hydric soil rating: No

Minor Components

Areas that are not eroded

Percent of map unit: 5 percent

Glenford

Percent of map unit: 5 percent Landform: Terraces, lake plains

Ellsworth

Percent of map unit: 5 percent *Landform:* Till plains

GbD2—Geeburg silt loam, 12 to 18 percent slopes, moderately eroded

Map Unit Setting

National map unit symbol: wpv7 Elevation: 590 to 1,970 feet Mean annual precipitation: 32 to 42 inches Mean annual air temperature: 48 to 54 degrees F Frost-free period: 140 to 195 days Farmland classification: Not prime farmland

Map Unit Composition

Geeburg and similar soils: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Geeburg

Setting

Landform: Hillsides Down-slope shape: Linear Across-slope shape: Linear Parent material: Clayey lacustrine deposits

Typical profile

H1 - 0 to 7 inches: silt loam H2 - 7 to 33 inches: silty clay H3 - 33 to 60 inches: silty clay

Properties and qualities

Slope: 12 to 18 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 18 to 30 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent

Available water supply, 0 to 60 inches: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: D Ecological site: F139XY002OH - Moist Calcareous Drift Flats Hydric soil rating: No

Minor Components

Uneroded soils

Percent of map unit: 10 percent

Mn-Mahoning-Urban land complex, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2v031 Elevation: 590 to 1,970 feet Mean annual precipitation: 33 to 52 inches Mean annual air temperature: 43 to 52 degrees F Frost-free period: 135 to 215 days Farmland classification: Not prime farmland

Map Unit Composition

Mahoning and similar soils: 45 percent Urban land: 35 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Mahoning

Setting

Landform: Till plains Landform position (two-dimensional): Summit, footslope Landform position (three-dimensional): Interfluve, base slope Down-slope shape: Concave Across-slope shape: Linear Parent material: Till

Typical profile

 $\begin{array}{l} Ap - 0 \ to \ 7 \ inches: \ silt \ loam \\ Eg - 7 \ to \ 9 \ inches: \ silt \ loam \\ Btg - 9 \ to \ 12 \ inches: \ silty \ clay \ loam \\ Bt1 - 12 \ to \ 20 \ inches: \ silty \ clay \\ Bt2 - 20 \ to \ 30 \ inches: \ silty \ clay \\ BCt - 30 \ to \ 36 \ inches: \ clay \ loam \\ C - 36 \ to \ 60 \ inches: \ clay \ loam \end{array}$

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 6 to 12 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Available water supply, 0 to 60 inches: Moderate (about 6.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: D Ecological site: F139XY002OH - Moist Calcareous Drift Flats Hydric soil rating: No

Description of Urban Land

Setting

Down-slope shape: Linear *Across-slope shape:* Linear

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydric soil rating: Unranked

Minor Components

Udorthents

Percent of map unit: 10 percent Hydric soil rating: Unranked

Ellsworth

Percent of map unit: 5 percent Landform: Till plains Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Trumbull

Percent of map unit: 5 percent Landform: Depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Sb—Sebring silt loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2v057 Elevation: 590 to 1,970 feet Mean annual precipitation: 33 to 52 inches Mean annual air temperature: 43 to 52 degrees F Frost-free period: 135 to 215 days Farmland classification: Prime farmland if drained

Map Unit Composition

Sebring and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sebring

Setting

Landform: Terraces Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Parent material: Glaciolacustrine deposits

Typical profile

Ap - 0 to 9 inches: silt loam BEg - 9 to 14 inches: silt loam Btg - 14 to 38 inches: silty clay loam BCg - 38 to 44 inches: silty clay loam Cg - 44 to 72 inches: silt loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.14 to 1.42 in/hr)
Depth to water table: About 0 to 9 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Calcium carbonate, maximum content: 9 percent
Available water supply, 0 to 60 inches: Very high (about 12.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: C/D Ecological site: F139XY011OH - Wet Calcareous Depression Hydric soil rating: Yes

Minor Components

Fitchville

Percent of map unit: 8 percent Landform: Lakebeds (relict), terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Luray

Percent of map unit: 7 percent Landform: Terraces Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

WrB—Wheeling silt loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: wpx8 Elevation: 590 to 1,970 feet Mean annual precipitation: 32 to 55 inches Mean annual air temperature: 46 to 57 degrees F Frost-free period: 140 to 195 days Farmland classification: All areas are prime farmland

Map Unit Composition

Wheeling and similar soils: 95 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wheeling

Setting

Landform: Outwash terraces Down-slope shape: Convex Across-slope shape: Linear Parent material: Outwash

Typical profile

H1 - 0 to 10 inches: silt loam *H2 - 10 to 35 inches:* silt loam *H3 - 35 to 60 inches:* sandy loam

Properties and qualities

Slope: 2 to 6 percent *Depth to restrictive feature:* More than 80 inches *Drainage class:* Well drained

Custom Soil Resource Report

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water supply, 0 to 60 inches: Moderate (about 8.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: B Ecological site: F139XY005OH - Dry Acidic Drift Plains Hydric soil rating: No

Minor Components

Chili

Percent of map unit: 5 percent *Landform:* Terraces

Soil Information for All Uses

Suitabilities and Limitations for Use

The Suitabilities and Limitations for Use section includes various soil interpretations displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each interpretation.

Land Classifications

Land Classifications are specified land use and management groupings that are assigned to soil areas because combinations of soil have similar behavior for specified practices. Most are based on soil properties and other factors that directly influence the specific use of the soil. Example classifications include ecological site classification, farmland classification, irrigated and nonirrigated land capability classification, and hydric rating.

Hydric Rating by Map Unit

This rating indicates the percentage of map units that meets the criteria for hydric soils. Map units are composed of one or more map unit components or soil types, each of which is rated as hydric soil or not hydric. Map units that are made up dominantly of hydric soils may have small areas of minor nonhydric components in the higher positions on the landform, and map units that are made up dominantly of nonhydric soils may have small areas of minor hydric components in the lower positions on the landform. Each map unit is rated based on its respective components and the percentage of each component within the map unit.

The thematic map is color coded based on the composition of hydric components. The five color classes are separated as 100 percent hydric components, 66 to 99 percent hydric components, 33 to 65 percent hydric components, 1 to 32 percent hydric components, and less than one percent hydric components.

In Web Soil Survey, the Summary by Map Unit table that is displayed below the map pane contains a column named 'Rating'. In this column the percentage of each map unit that is classified as hydric is displayed.

Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). Under natural conditions, these soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

The NTCHS definition identifies general soil properties that are associated with wetness. In order to determine whether a specific soil is a hydric soil or nonhydric soil, however, more specific information, such as information about the depth and duration of the water table, is needed. Thus, criteria that identify those estimated soil properties unique to hydric soils have been established (Federal Register, 2002). These criteria are used to identify map unit components that normally are associated with wetlands. The criteria used are selected estimated soil properties that are described in "Soil Taxonomy" (Soil Survey Staff, 1999) and "Keys to Soil Taxonomy" (Soil Survey Staff, 2006) and in the "Soil Survey Manual" (Soil Survey Division Staff, 1993).

If soils are wet enough for a long enough period of time to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils are specified in "Field Indicators of Hydric Soils in the United States" (Hurt and Vasilas, 2006).

References:

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service.

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Са	Canadice silty clay loam	95	0.1	0.2%
СсВ	Caneadea silt loam, 2 to 6 percent slopes	3	14.0	49.2%
CoC2	Chili gravelly loam, 6 to 12 percent slopes, moderately eroded	0	2.1	7.5%
EuC	Ellsworth-Urban land complex, 6 to 18 percent slopes	0	2.3	8.1%
GbC2	Geeburg silt loam, 6 to 12 percent slopes, moderately eroded	0	4.4	15.3%
GbD2	Geeburg silt loam, 12 to 18 percent slopes, moderately eroded	0	0.1	0.3%
Mn	Mahoning-Urban land complex, 0 to 2 percent slopes	5	3.0	10.5%
Sb	Sebring silt loam, 0 to 2 percent slopes	92	0.4	1.4%
WrB	Wheeling silt loam, 2 to 6 percent slopes	0	2.1	7.4%
Totals for Area of Interest			28.6	100.0%

Rating Options—Hydric Rating by Map Unit

Aggregation Method: Percent Present

Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The aggregation method "Percent Present" returns the cumulative percent composition of all components of a map unit for which a certain condition is true. For example, attribute "Hydric Rating by Map Unit" returns the cumulative percent composition of all components of a map unit where the corresponding hydric rating is "Yes". Conditions may be simple or complex. At runtime, the user may be able to specify all, some or none of the conditions in question.

Component Percent Cutoff: None Specified

Components whose percent composition is below the cutoff value will not be considered. If no cutoff value is specified, all components in the database will be considered. The data for some contrasting soils of minor extent may not be in the database, and therefore are not considered.

Tie-break Rule: Lower

The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX D - FEDERAL EMERGENCY MANAGEMENT AGENCY FLOOD INSURANCE RATE MAP

National Flood Hazard Layer FIRMette

Legend

Basemap Imagery Source: USGS National Map 2023